L2 MTH1314 2014-2015

Feuille 1. Logique et raisonnement

On considère la phrase: "les mathématiciens sont tous des farceurs". Indiquer Exercice 1. laquelle des cinq phrases suivantes en est la négation:

- 1. "les mathématiciens ne sont jamais des farceurs".
- 2. "les mathématiciens sont parfois des farceurs".
- 3. "il y a des mathématiciens qui ne sont pas des farceurs".
- 4. "les farceurs sont tous des mathématiciens".
- 5. "il y a des farceurs qui ne sont pas des mathématiciens".

Formaliser avec des quantificateurs chacune de ces assertions et écrire sa négation.

Exercice 2. Notons \mathscr{E} l'ensemble des étudiants de l'UBS, \mathscr{J} l'ensemble des jours de la semaine et pour un étudiant x, $h_j(x)$ son heure de réveil le jour j.

- 1. Ecrire avec des symboles mathématiques la proposition : "Tout étudiant de l'UBS se réveille au moins un jour de la semaine avant 8h".
- 2. Ecrire la négation de cette proposition avec des symboles mathématiques puis l'énoncer en français.

Exercice 3. Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} . Traduire en termes de quantificateurs les expressions suivantes :

1. f est majorée

2. f est bornée

3. f est paire

4. fne s'annule pas

5. f est périodique

6. f est croissante

7. f est strictement croissante

8. f n'est pas croissante

9. f n'est pas la fonction nulle

10. f atteint toutes les valeurs de \mathbb{N}

11. f est inférieure à g

12. f n'est pas inférieure à g

Exercice 4. Les propositions suivantes sont-elles vraies ou fausses? Donner à chaque fois la négation.

1.
$$\exists x \in \mathbb{Z}, \ \exists y \in \mathbb{N}, \ x \le -y^2.$$
 2. $\exists x \in \mathbb{Z}, \ \forall y \in \mathbb{N}, \ x \le -y^2.$ 3. $\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{N}, \ x \le -y^2.$ 4. $\forall x \in \mathbb{Z}, \ \forall y \in \mathbb{N}, \ x \le -y^2.$

2.
$$\exists x \in \mathbb{Z}, \ \forall y \in \mathbb{N}, \ x < -y^2$$
.

$$\exists \forall x \in \mathbb{Z} \ \exists y \in \mathbb{N} \ x < -y^2$$

$$4. \ \forall x \in \mathbb{Z}, \ \forall y \in \mathbb{N}, \ x \leq -y^2$$

Compléter, lorsque c'est possible, avec \forall ou \exists pour obtenir les énoncés vrais les Exercice 5. plus forts.

1. ...
$$x \in \mathbb{R}$$
, $(x+1)^2 = x^2 + 2x + 1$

$$2. \dots x \in \mathbb{R}, \ x^2 + 3x + 2 = 0$$

$$3. \dots x \in \mathbb{N}, \ x \leqslant \pi$$

4. ...
$$x \in \mathbb{R}, \ x^2 + 2x + 3 = 0$$

Examiner les propositions suivantes. Lorsqu'elles sont vraies, en donner une démonstration; sinon proposer un contre-exemple.

1.
$$\forall x \in [0,1], \ \forall y \in [0,1], \ x+y \in [0,1].$$

2.
$$\forall x \in [0,1], \exists y \in [0,1], x+y \in [0,1].$$

3. $\exists x \in [0,1], \forall y \in [0,1], x + y \in [0,1].$

Exercice 7. Les propositions suivantes sont-elles vraies ou fausses?

- 1. Pour qu'un réel soit strictement supérieur à 3, il suffit qu'il soit strictement supérieur à 4.
- 2. Pour qu'un réel soit strictement supérieur à 3, il faut qu'il soit différent de 2.
- 3. Une condition suffisante pour qu'un réel soit supérieur ou égal à 2, est qu'il soit supérieur ou égal à 3.
- Pour qu'un réel soit strictement supérieur à 2, il suffit que son carré soit strictement supérieur à 4.
- 5. Une condition nécessaire et suffisante pour qu'un entier naturel soit strictement supérieur à 1 est qu'il soit supérieur ou égal à 2.

Exercice 8. Compléter les pointillés par le connecteur logique qui s'impose : \Leftrightarrow , \Leftarrow , \Rightarrow .

- 1. Soit $x \in \mathbb{R}$, $x^2 = 4$ x = 2.
- 2. Soit $z \in \mathbb{C}$, $z = \overline{z}$ $z \in \mathbb{R}$.
- 3. Soit $x \in \mathbb{R}$, $x = \pi$ $e^{2ix} = 1$.

Exercice 9. On considère un réel x et les deux propositions:

A: "pour tout réel $\varepsilon > 0$, $x \le \varepsilon$ " et B: " $x \le 0$ ". Montrer que $A \Rightarrow B$.

Exercice 10. On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et les deux propositions A: "f est une fonction paire et impaire" et B: "f est la fonction nulle". Montrer que $A \Leftrightarrow B$.

Exercice 11. Prouver que l'implication suivante est FAUSSE: "Si f est une application continue de [-1,1] dans \mathbb{R} et si $\int_{-1}^{1} f(x)dx = 0$ alors f = 0 sur [-1,1]". (il s'agit donc de trouver un contrexemple).

Exercice 12. Montrer que $\sqrt{2}$ est irrationnel.

Exercice 13. Pour $n \in \mathbb{N}$, on définit les deux propriétés suivantes :

$$P_n$$
: 3 divise $4^n - 1$ et Q_n : 3 divise $4^n + 1$.

- 1. Prouver que pour tout $n \in \mathbb{N}$, $P_n \Rightarrow P_{n+1}$ et $Q_n \Rightarrow Q_{n+1}$.
- 2. Montrer que P_n est vraie pour tout $n \in \mathbb{N}$.
- 3. Que penser, alors, de l'assertion : $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geqslant n_0 \Rightarrow Q_n)$?

Exercice 14. On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=4$ et $x_{n+1}=\frac{2x_n^2-3}{x_n+2}$

- 1. Montrer que $\forall n \in \mathbb{N}, x_n > 3$.
- 2. Montrer alors que $\forall n \in \mathbb{N}, \quad x_{n+1} 3 > \frac{3}{2}(x_n 3).$
- 3. En déduire que $\forall n \in \mathbb{N}, \quad x_n \geqslant \left(\frac{3}{2}\right)^n + 3.$
- 4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente?

Exercice 15. La suite de Fibonacci est définie par : $u_0 = 1$, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$. Montrer que:

$$\forall n \in \mathbb{N}, \ u_n \le \left(\frac{5}{3}\right)^n$$

Exercice 16. Montrer par récurrence que $2^n > n^2$ pour tout n > 4.