L2 MTH1314 2016-2017

Devoir Maison n° 3 A rendre pour le lundi 5 Décembre

Le barème est donné à titre indicatif. La rédaction doit être personnelle et soignée.

Exercice 1. (5 points)

1. (2 points) Déterminer U et V deux éléments de $\mathbb{R}[X]$ tels que

$$X^2U + (X-1)^3V = 1.$$

- 2. (1 point) Ecrire le développement de Taylor en 1 du polynôme U.
- 3. (2 points) Déduire des deux questions précédentes la décomposition en éléments simples dans $\mathbb{R}(X)$ de

$$F = \frac{1}{X^2(X-1)^3}.$$

Exercice 2. (10 points+2 points bonus) On admet dans cet exercice que pour tout $n \ge 2$, le sous-groupe alterné \mathcal{A}_n est de cardinal $\frac{n!}{2}$.

- 1. (1 point) Lister tous les éléments des groupes alternés A_3 et A_4 .
- 2. (2 points) Soient τ_1 et τ_2 deux transpositions. Montrer, en discutant suivant le nombre d'éléments communs à leurs supports, que l'on peut toujours écrire $\tau_1 \circ \tau_2$ comme un produit de 3-cycles (éventuellement d'un seul).
- 3. (1 point) En déduire que tout élément de A_n peut s'écrire comme un produit de 3-cycles.
- 4. (2 points) On suppose $n \ge 4$. Soit H un sous-groupe de \mathcal{A}_n de cardinal $\frac{n!}{4}$ et $\tau \in \mathcal{A}_n \setminus H$. Montrer que

$$\varphi: \qquad \mathcal{A}_n \to \mathcal{A}_n$$

$$\sigma \mapsto \sigma \circ \tau$$

est une bijection.

- 5. (2 points) Montrer que $\varphi(H) = A_n \setminus H$ et en déduire $\varphi(A_n \setminus H)$.
- 6. (2 points) En déduire que pour tout $\tau \in A_n$, on a $\tau^2 \in H$.
- 7. (Bonus! 2 points)Conclure qu'un tel sous-groupe H n'existe pas.

Exercice 3. (5 points) Soient $A \in \mathcal{M}_{2n}(\mathbb{R})$, une matrice antisymétrique (c'est-à-dire $^tA = -A$) et $J \in \mathcal{M}_{2n}(\mathbb{R})$ la matrice dont tous les coefficients sont égaux à 1. On note c_1, c_2, \ldots, c_{2n} les vecteurs colonnes de A et e le vecteur colonne dont tous les coefficients sont égaux à 1.

1. (2 points) Prouver que la fonction F définie par $\forall x \in \mathbb{R}, F(x) = \det(A + xJ)$, est une fonction paire.

1

- 2. (2 points) Prouver que $F(x) = \det(A) + x \sum_{i=1}^{2n} \det(c_1, \dots, c_{i-1}, e, c_{i+1}, \dots, c_{2n})$.
- 3. (1 point) En déduire que $\forall x \in \mathbb{R}$, $\det(A + xJ) = \det(A)$.