

Devoir Maison 11 Intégration, représentation matricielle

A faire pour le jeudi 25 mai

Problème I - Intégration

On considère la fonction f définie pour tout x > 0 par

$$f(x) = \int_0^1 \frac{e^t}{x+t} dt.$$

Partie 1 : Une équation différentielle vérifiée par f

- 1. Justifier que f est définie sur $]0; +\infty[$ et déterminer son signe.
- 2. Montrer que pour tout x > 0,

$$f(x) = e^{-x} \int_{x}^{x+1} \frac{e^{u}}{u} du.$$

- 3. Justifier soigneusement que f est \mathscr{C}^1 sur $]0; +\infty[$.
- 4. Montrer que pour tout x > 0,

$$f'(x) + f(x) = \frac{e}{x+1} - \frac{1}{x}.$$

5. (Question indépendante) Résoudre l'équation différentielle

$$\forall x \in \mathbb{R}, \qquad y'(x) + y(x) = \frac{e^{-x}}{x^2 + 2x + 5}$$

Partie 2 : Comportement en $+\infty$.

6. Montrer d'autre part que pour tout x > 0,

$$f(x) = \frac{e}{x+1} - \frac{1}{x} + \int_0^1 \frac{e^t}{(x+t)^2} dt.$$

- 7. En déduire pour tout x > 0 une expression de f'(x) sous la forme $\int_0^1 \alpha(x,t) dt$ où $\alpha(x,t)$ est une expression en fonction de x et de t que l'on précisera.
- 8. (a) Déterminer la monotonie de f.
 - (b) Justifier que f possède une limite finie en $+\infty$ (on ne cherchera pas à la calculer dans cette question).
- 9. Montrer que pour tout x > 0,

$$\frac{e-1}{x+1} \leqslant f(x) \leqslant \frac{e-1}{x}.$$

10. En déduire soigneusement un équivalent de f en $+\infty$.

Partie 3 : Comportement en 0^+ .

On définit pour tout x > 0, $g(x) = \int_0^1 \frac{e^t - 1}{t + x} dt$.

11. Justifier qu'il existe M > 0 (à déterminer) telle que

$$\forall t \in [0; 1], \quad 0 \leqslant e^t - 1 \leqslant Mt.$$

- 12. En déduire que g est une fonction bornée sur $]0; +\infty[$.
- 13. Montrer alors que pour tout x > 0,

$$\ln\left(\frac{x+1}{x}\right) \leqslant f\left(x\right) \leqslant M + \ln\left(\frac{x+1}{x}\right).$$

14. En déduire un équivalent simple de f en 0^+ .

Partie 4: Un endomorphisme

Pour toute fonction f continue sur \mathbb{R} , on pose $\varphi(f): x \mapsto e^{-x} \int_{x}^{x+1} f(t) e^{t} dt$.

15. Montrer proprement que φ est un endomorphisme de $\mathscr{C}(\mathbb{R})$.

Pour tout fonction polynomiale f, on admet que $\varphi(f)$ est aussi une fonction polynomiale. On pose $E = \mathbb{R}_2[X]$ et pour tout polynôme P, on note \tilde{P} la fonction polynomiale associée. On définit alors $\varphi(P)$ comme le polynôme associé à la fonction polynomiale $\varphi(\tilde{P})$. On admet que φ définit un endomorphisme sur E.

- 16. Déterminer A la matrice de φ dans la base $\mathscr{C}_{can} = (1, X, X^2)$.
- 17. On pose $N = A (e 1) I_3$. Vérifier que N est nilpotente d'ordre 3.
- 18. En déduire les puissances de A.
- 19. Préciser pour tout $n \in \mathbb{N}$, $\varphi^n(X-3)$.

Problème II - Représentation matricielle

On considère

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

$$P \mapsto \frac{1}{2} \left[P\left(\frac{X}{2}\right) + P\left(\frac{X+1}{2}\right) \right].$$

On pose également

$$\varphi: \mathbb{R}_2[X] \to \mathbb{R}$$

$$P \mapsto P(1).$$

Soit enfin \mathscr{C} la base canonique de $\mathbb{R}_2[X]$.

Partie 1 : Méthode algébrique

- 1. Montrer que f est un endomorphisme.
- 2. Calculer $A = \text{mat}_{\mathscr{C}}(f)$. On pose dans la suite A' = 8A.

- 3. L'application f est-elle injective? surjective?
- 4. Déterminer la matrice de φ dans les bases canoniques.
- 5. Déterminer le noyau de φ .
- 6. Déterminer $\operatorname{Ker}(A'-8I_3)$ et en déduire $\operatorname{Ker}(f-\operatorname{Id}_{\mathbb{R}_2[X]})$.
- 7. De même déterminer Ker $\left(f \frac{1}{2} \mathrm{Id}_{\mathbb{R}_2[X]}\right)$ et Ker $\left(f \frac{1}{4} \mathrm{Id}_{\mathbb{R}_2[X]}\right)$.

On pose $\mathscr{B} = (1, 1 - 2X, 6X^2 - 6X + 1).$

- 8. Justifier que \mathscr{B} est une base de $\mathbb{R}_2[X]$.
- 9. Calculer $D = \operatorname{mat}_{\mathscr{B}}(f)$.
- 10. On pose $P = P_{\mathscr{C},\mathscr{B}}$. Préciser P et calculer P^{-1} .
- 11. En déduire A^n pour tout $n \in \mathbb{N}$.
- 12. Soient $P = a + bX + cX^2 \in \mathbb{R}_2[X]$ et $n \in \mathbb{N}$. Calculer $f^n(P)$.
- 13. Montrer alors que pour tout $P \in \mathbb{R}_2[X]$,

$$\lim_{n \to +\infty} \varphi\left(f^{n}\left(P\right)\right) = \int_{0}^{1} P(t) \, \mathrm{d}t.$$

Partie 2 : Méthode analytique

On pose

$$\begin{split} g: \mathbb{R}[X] &\to \mathbb{R}[X] \\ P &\mapsto \frac{1}{2} \left[P\left(\frac{X}{2}\right) + P\left(\frac{X+1}{2}\right) \right]. \end{split}$$

- 14. On admet que g est un endomorphisme de $\mathbb{R}[X]$. Montrer que g est injectif.

 On pourra commencer par montrer que si a est une racine de $P \in Ker(g)$, alors $a + \frac{1}{2}$ aussi.
- 15. Soit $Q \in \mathbb{R}[X]$. On pose $n = \deg(Q)$ et g_n la restriction de g à $\mathbb{R}_n[X]$. Montrer que $Q \in \mathrm{Im}(g_n)$.
- 16. En déduire que q est un automorphisme.
- 17. Montrer par récurrence l'assertion suivante :

$$\forall P \in \mathbb{R}[X], \ \forall n \in \mathbb{N}, \qquad \qquad g^n(P) = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} P\left(\frac{X + k}{2^n}\right).$$

18. Soit $P \in \mathbb{R}[X]$. Déterminer

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{k=1}^{N} P\left(\frac{k}{N}\right).$$

19. En déduire une expression de

$$\lim_{n\to+\infty}\psi\left(g^{n}\left(P\right)\right),$$

où
$$\psi: \frac{\mathbb{R}[X] \to \mathbb{R}}{P \mapsto P(1)}$$
.