

Correction Hiver 08 Espaces vectoriels

Solution de l'exercice 1 Appliquons la règle du n^2 . Par croissance comparée, on a

$$\lim_{n \to +\infty} n^2 u_n = \lim_{n \to +\infty} \frac{n^4}{2^n} = 0.$$

Donc il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \geqslant n_0$,

$$0 \leqslant n^2 u_n \leqslant 1 \qquad \Leftrightarrow \qquad 0 \leqslant u_n \leqslant \frac{1}{n^2} \qquad \text{car } n \neq 0.$$

Or $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}$ converge en tant que série de Riemann d'exposant $\alpha=2>1$. Conclusion, par le théorème de comparaison de séries à termes positifs,

$$\sum_{n \in \mathbb{N}} u_n \text{ converge.}$$

Solution de l'exercice 2

1. On a

$$N^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad N^3 = O_3.$$

Puis, pour tout $n \ge 3$, $N^n = O_3$. Conclusion,

$$N^{0} = I_{3}, \ N^{1} = N, \ N^{2} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \forall n \geqslant 3, \ N^{n} = O_{3}.$$

2. On observe que $A=I_3+N.$ De plus N et I_3 commutent. Donc par la formule du binôme de Newton,

$$\forall n \ge 2, \qquad A^n = (I_3 + N)^n = \sum_{k=0}^n \binom{n}{k} N^k I_3^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} N^k$$

$$= \binom{n}{0} I_3 + \binom{n}{2} N + \binom{n}{2} N^2 + O_3 \qquad \text{car } n \ge 2$$

$$= I_3 + nN + \frac{n(n-1)}{2} N^2$$

$$= \binom{1}{0} \frac{n}{1} \frac{n(n-1)}{2} \binom{n}{0} \binom{n}{1} \binom{n}{2} \binom{$$

On observe que cette formule reste vraie si n=0 et si n=1. Conclusion,

$$\forall n \in \mathbb{N}, \qquad A^n = \begin{pmatrix} 1 & n & n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}.$$

- 3. On a les points suivants :
 - $F \subseteq \mathcal{M}_3(\mathbb{R})$ par définition.
 - Si $M = O_3$. Alors en prenant $P = 0_{\mathbb{R}[X]}$, on a bien M = P(A). Donc $O_3 = M \in F$.
 - Soient $(\lambda, \mu) \in \mathbb{R}^2$, $(M_1, M_2) \in F^2$. Puisque $M_1 \in F$, alors il existe $P_1 \in \mathbb{R}[X]$ tel que $M_1 = P_1(A)$. De même il existe $P_2 \in \mathbb{R}[X]$ tel que $M_2 = P_2(A)$. Posons $M_3 = \lambda M_1 + \mu M_2$. Alors,

$$M_3 = \lambda P_1(A) + \mu P_2(A).$$

Posons $P_3 = \lambda P_1 + \mu P_2$. Alors $P_3 \in \mathbb{R}[X]$ et

$$M_3 = P_3(A)$$
.

Donc $\lambda\,M_1 + \mu M_2 = M_3 \in F$ et F est stable par combinaisons linéaires. Conclusion,

$$F$$
 est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

4. (a) Posons $P = 1 \in \mathbb{R}[X]$. Alors, $P(A) = I_3$ et donc $I_3 \in F$. Puisque $A = I_3 + N$, on a $N = A - I_3$. Posons P = X - 1, alors $N = P(A) \in F$. Enfin, par la question 2, avec n = 2, nous avons aussi

$$A^{2} = I_{3} + 2N + \frac{2(2-1)}{2}N^{2} = I_{3} + 2N + N^{2}$$

$$\Leftrightarrow N^{2} = A^{2} - 2N - I_{3} = A^{2} - 2(A - I_{3}) - I_{3} = A^{2} - 2A + 2I_{3}.$$

Posons $P = X^2 - 2X + 2$, alors $N^2 = P(A) \in F$.

Nous aurions aussi pu constaté que $A^2 \in F$ (en prenant $P = X^2$), puis $N^2 = A^2 - I_3 - 2N \in F$ car F est stable par combinaisons linéaires.

Donc I_3 , N et N^2 sont des vecteurs de F. Or F est un espace vectoriel, donc est stable par combinaisons linéaires et donc

$$G = \operatorname{Vect}\left(I_3, N, N^2\right) \subseteq F.$$

On rappelle que G est le plus petit espace vectoriel (au sens de l'inclusion) contenant les vecteurs I_3 , N et N^2 .

(b) Soit $M \in F$. Alors il existe $n \in \mathbb{N}$ et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$ tel que

$$M = P(A) = \sum_{k=0}^{n} a_k A^k$$

Donc par la question 2,

$$M = \sum_{k=0}^{n} a_{k} \underbrace{\left(I_{3} + kN + \frac{k(k-1)}{2}N^{2}\right)}_{\in G}.$$

Or G est stable par combinaisons linéaires en tant que sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ (en tant qu'espace engendré). Donc $M \in G$. Ceci étant vrai pour $M \in F$ quelconque. D'où $F \subseteq G$. Or par la question précédente, $G \subseteq F$. Conclusion,

$$F = G = \text{Vect}\left(I_3, N, N^2\right).$$