

Epreuve de mathématiques 7 2023-2024

L'usage de la calculatrice n'est pas autorisé Durée : 4h

Encadrer les résultats et numéroter les copies

Problème 1 - Applications linéaires

Soient E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$.

L'objectif de ce problème est de déterminer les racines carrées de f i.e. de trouver les endomorphismes g de E tels que $g^2 = g \circ g = f$.

Partie 1 : Généralités

Soit E un espace vectoriel, $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$ une racine carrée de $f : g^2 = g \circ g = f$.

- 1. Quelles sont les racines carrées de Id_E ?
- 2. Montrer que $\operatorname{Ker}(g) \subseteq \operatorname{Ker}(f)$.
- 3. Montrer que $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$.
- 4. Montrer que $f \in GL(E) \Leftrightarrow g \in GL(E)$.
- 5. Montrer que f et g commutent : $f \circ g = g \circ f$.
- 6. On suppose dans cette question que E de dimension finie. Montrer que

$$\operatorname{Ker}(g) = \operatorname{Ker}(f) \qquad \Leftrightarrow \qquad \operatorname{Im}(g) = \operatorname{Im}(f).$$

7. Montrer que $\operatorname{Ker}(g) \cap \operatorname{Im}(g) = g(\operatorname{Ker}(f))$.

Partie 2 : Un exemple dans \mathbb{R}^2

On fixe dans cette partie $E = \mathbb{R}^2$.

Pour $\theta \in \mathbb{R}$ et pour tout $(x, y) \in \mathbb{R}^2$, on pose $f_{\theta}(x, y) = (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta))$. Soit $\theta \in \mathbb{R}$.

- 8. Montrer que f_{θ} est un endomorphisme de E.
- 9. Montrer que f_{θ} est un automorphisme de E.
- 10. Soient $\theta' \in \mathbb{R}$.
 - (a) Justifier que $f_{\theta} \circ f_{\theta'}$ est un automorphisme de E.
 - (b) Montrer que $f_{\theta} \circ f_{\theta'} = f_{\theta + \theta'}$.
- 11. Déduire de la question précédente f_{θ}^{-1} .
- 12. Déduire également de la question 10. une racine carrée de f_{θ} .
- 13. Montrer que f_{π} est une symétrie et préciser ses éléments caractéristiques (par rapport à quel ensemble et parallèlement à quel ensemble).
- 14. Préciser une racine carrée de f_{π} .

Partie 3 : Un exemple dans \mathbb{R}^3 .

On fixe dans cette partie $E = \mathbb{R}^3$ que l'on identifie à $\mathcal{M}_{3,1}(\mathbb{R})$. On pose $A = \begin{pmatrix} 7 & -3 & 3 \\ 7 & -3 & 3 \\ 1 & -1 & 1 \end{pmatrix}$ et on définit

$$\varphi : \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ X & \mapsto & AX. \end{array}$$

- 15. Montrer que φ est un endomorphisme de E.
- 16. Déterminer l'image de φ , en préciser une base.
- 17. Déterminer le rang de φ .
- 18. Déterminer un supplémentaire à $\operatorname{Im}(\varphi)$.
- 19. Calculer $\varphi \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$ puis en déduire le noyau de φ , en préciser une base.
- 20. Im (φ) et Ker (φ) sont-ils supplémentaires dans E?

Posons $\varphi_1 = \varphi - \mathrm{Id}_{\mathbb{R}^3}$ et $\varphi_4 = \varphi - 4 \mathrm{Id}_{\mathbb{R}^3}$.

- 21. Déterminer une base du noyau de φ_1 et une base du noyau de $\varphi_4.$
- 22. On pose $e_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $e_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $e_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ et $\mathcal{B} = (e_1, e_2, e_3)$. Montrer que \mathcal{B} est une base de E.
- 23. On pose $G = \operatorname{Ker}(\varphi_1) + \operatorname{Ker}(\varphi_4)$. Montrer que $\operatorname{Ker}(\varphi)$ et G sont supplémentaires dans E.
- 24. Calculer $\varphi(\mathcal{B})$.
- 25. Préciser si φ est injective, surjective et/ou bijective.

Soit ψ un endomorphisme de E tel que $\psi^2 = \varphi$. On admet qu'alors il existe $(\mu_1, \mu_2, \mu_3) \in \mathbb{R}^3$ tel que pour tout $i \in [1; 3], \psi(e_i) = \mu_i e_i$.

- 26. Déterminer les différentes valeurs possibles pour μ_1, μ_2, μ_3 .
- 27. En déduire que φ admet au plus 4 racines carrées.

Partie 4 : Racines carrées de 0

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et $g \in \mathcal{L}(E)$ tel que $g^2 = 0_{\mathcal{L}(E)}$. On note $r = \operatorname{rg}(g)$.

- 28. Montrer que $\operatorname{Im}(g) \subseteq \operatorname{Ker}(g)$.
- 29. Montrer que $\operatorname{rg}(g) \leqslant \frac{n}{2}$.
- 30. Soit F un supplémentaire de Ker(g). Justifier que dim(F) = r.
- 31. Soit $\mathscr{B}_{F} = (e_{1}, \ldots, e_{r})$ une base de F. Montrer que $g\left(\mathscr{B}_{F}\right) = (g\left(e_{1}\right), \ldots, g\left(e_{r}\right))$ est libre.
- 32. De quel espace $g(\mathscr{B}_F)$ est-ce une base? Le démontrer.
- 33. On suppose que n=2r. Montrer que $(g(e_1),\ldots,g(e_r),e_1,\ldots,e_r)$ est une base de E.

Partie 5 : Un contre-exemple dans $\mathscr{M}_{2}\left(\mathbb{R}\right)$

On pose $E = \mathcal{M}_2(\mathbb{R})$ et on considère l'application suivante :

$$F: \begin{pmatrix} \mathcal{M}_2(\mathbb{R}) & \to & \mathcal{M}_2(\mathbb{R}) \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \mapsto & \begin{pmatrix} -a+b-c+d & -a-b+c+d \\ 0 & -2a+2d \end{pmatrix}.$$

On admet que $F \in \mathcal{L}(E)$.

- 34. Déterminer une base du noyau de F.
- 35. Déterminer une base de l'image de F. Vérifier la cohérence des dimensions.
- 36. Montrer que si \mathscr{B}_I est une base *quelconque* de $\operatorname{Im}(F)$, alors $F(\mathscr{B}_I)$ est une famille génératrice de $\operatorname{Im}(F^2)$.
- 37. Déduire des deux questions précédentes $\operatorname{Im}(F^2)$.
- 38. En déduire que $F^3 = 0_{\mathscr{L}(E)}$.

Soient G une racine carrée de F et $\mathcal{N} = \{ k \in \mathbb{N} \mid G^k = 0_{\mathscr{L}(E)} \}$.

- 39. Montrer que \mathcal{N} admet un minimum. On note $p = \min(\mathcal{N})$.
- 40. Justifier qu'il existe $a \in E$ tel que $G^{p-1}(a) \neq 0_E$.
- 41. Montrer que $(a, G(a), \ldots, G^{p-1}(a))$ est libre. On pourra composer par G^{p-1} .
- 42. En déduire que $p \leq 4$ puis que $G^4 = 0_{\mathscr{L}(E)}$.
- 43. Conclure que F n'admet aucune racine carrée.

Partie 6 : Un contre-exemple dans $\mathbb{R}[X]$

On pose $E = \mathcal{M}_2(\mathbb{R})$ et on considère l'application suivante :

$$D: \qquad \begin{array}{c} \mathbb{R}[X] \to \mathbb{R}[X] \\ P \mapsto P'. \end{array}$$

On admet que $D \in \mathcal{L}(E)$ et on suppose que $T \in \mathcal{L}(E)$ est une racine carrée de $D: T^2 = D$.

- 44. Préciser Ker(D) et sa dimension.
- 45. Montrer que T n'est pas injective.
- 46. En déduire que Ker(T) = Ker(D).
- 47. Montrer que pour tout $n \in \mathbb{N}^*$, $\operatorname{Ker}(T^n) = \operatorname{Ker}(T)$.
- 48. Conclure à une contradiction.

Problème 2 - Dénombrement

Pour $n \in \mathbb{N}^*$, on pose E = [1; n]. On appelle partition ordonnée de E, une famille $(A_i)_{i \in [1; p]}$ de $p \in [1; n]$ sous-ensembles de E vérifiant

- $\forall i \in [1; p], A_i \neq \emptyset \text{ et } A_i \in \mathscr{P}(E) \text{ i.e. } A_i \subseteq E,$
- $\forall (i,j) \in [1;p], i \neq j$, on a $A_i \cap A_j = \emptyset$,
- $\bullet \bigcup_{i \in [1;p]} A_i = E,$

pour laquelle l'ordre d'apparition des A_i dans la famille est important (exemple : $(\{1\}, \{2, 3\})$ et $(\{2, 3\}, \{1\})$ sont deux partitions ordonnées distinctes).

On note u_n le nombre de partitions ordonnées de E et pour tout $p \in [1; n]$, $u_{n,p}$ le nombre de partitions ordonnées de E avec exactement p sous-ensembles de E.

- 1. (a) Montrer que $u_1 = 1$.
 - (b) Si n=2, énumérer les partitions ordonnées de E et vérifier que $u_2=3$.
 - (c) Si n=3, énumérer les partitions ordonnées de E et vérifier que $u_3=13$.
- 2. Calculer $u_{n,1}$ le nombre de partitions ordonnées de E = [1; n] ayant exactement 1 seul sousensemble de E.
- 3. Calculer $u_{n,n}$ le nombre de partitions ordonnées de E = [1; n] ayant exactement n sousensembles de E.
- 4. Soit $n \ge 3$. Calculer $u_{n,n-1}$ le nombre de partitions ordonnées de E = [1; n] ayant exactement n-1 sous-ensembles de E.
- 5. Justifier que construire une partition ordonnée avec exactement deux sous-ensembles de E revient à prendre un élément de $\mathscr{P}(E) \setminus \{\emptyset, E\}$.
- 6. En déduire $u_{n,2}$.
- 7. Soit $p \in [2; n]$. Montrer que

$$u_{n,p} = \sum_{k=1}^{n-p+1} \binom{n}{k} u_{n-k,p-1}.$$

On pourra utiliser v_k le nombre de partitions ordonnées de E dont le premier sous-ensemble A_1 de la partition de E contient exactement k éléments.

- 8. Retrouver alors le résultat de la question 6.
- 9. Déduire de la guestion 7. que

$$u_n = 1 + \sum_{k=1}^{n-1} \binom{n}{k} u_k.$$

10. Retrouver alors le résultat de la question 1.c puis calculer u_4 .