

TD4Nombres complexes

Exercice 1 Déterminer la forme algébrique des complexes suivants :

1.
$$z_1 = (6+3i)(4-2i)$$
 2. $z_2 = \frac{7+3i}{3-7i}$

2.
$$z_2 = \frac{7+3i}{3-7i}$$

3.
$$z_3 = (1+i)^3$$

Exercice 2 Déterminer la forme trigonométrique des complexes suivants.

1.
$$z_1 = 3 + 3i$$

2.
$$z_2 = -1 - \sqrt{3}i$$

3.
$$z_3 = -\frac{4}{3}i$$

4.
$$z_4 = -2$$

5.
$$z_5 = \frac{1+i}{\sqrt{3}+i}$$

4.
$$z_4 = -2$$
 5. $z_5 = \frac{1+i}{\sqrt{3}+i}$ 6. $z_6 = \frac{\sqrt{3}-i}{\sqrt{3}+i}$

7.
$$z_7 = e^{i\theta} + e^{2i\theta}, \ \theta \in \mathbb{R}.$$

Exercice 3 Déterminer la forme polaire de 1+i, 1-i et $\sqrt{3}+i$. En déduire une expression simplifiée des complexes suivants :

1.
$$z_1 = \frac{(1-i)^5}{(i+1)^4}$$

$$2. \ z_2 = (1+i)^{30}$$

3.
$$z_3 = \left((1-i)^2 \left(\sqrt{3} + i \right) \right)^{24}$$

Exercice 4 Soit $x \in \mathbb{R}$. A l'aide des complexes, linéariser les expressions suivantes :

1.
$$\cos^4(x)$$

$$2. \sin^2(x) \cos^3(x)$$

Exercice 5 Soit $x \in \mathbb{R}$. A l'aide des complexes, développer les expressions suivantes :

$$1. \sin(3x)$$

$$2. \cos(6x)$$

Exercice 6

- 1. Déterminer l'ensemble des points du plan complexe dont l'affixe vérifie $\frac{z-i}{z-1} \in \mathbb{R}$.
- 2. Déterminer l'ensemble des points du plan complexe dont l'affixe vérifie $\frac{z-1}{z+1} \in i\mathbb{R}$.

Exercice 7 Donner une caractérisation simple sur $z \in \mathbb{C}$ pour que le complexe Z = 1 + iz soit réel.

Exercice 8 Déterminer l'ensemble des complexes $z \in \mathbb{C}$ tels que $Z = z^2 + z + 1$ soit réel.

Exercice 9 Soit $a \in \mathbb{C}$ tel que 0 < |a| < 1. Pour tout $z \in \mathbb{C}$, $z \neq \frac{1}{\overline{a}}$, on définit $f(z) = \frac{z-a}{1-\overline{a}z}$. Montrer que \mathbb{U} est stable par f, c'est-à-dire que $f(\mathbb{U}) \subseteq \mathbb{U}$.

Pour aller plus loin

Exercice 10 Donner la forme algébrique de $(1+i)^{125}$ puis de $\left(\frac{1+i\sqrt{3}}{1+i}\right)^{125}$.

Exercice 11 Déterminer l'ensemble des complexes $z \in \mathbb{C}^*$ tels que les modules de z, $\frac{1}{z}$ et z-1 soient égaux.

Exercice 12 Soient $n \in \mathbb{N}$ et $(a, b) \in \mathbb{R}^2$. On pose

$$C = \sum_{k=0}^{n} \cos(a + kb) = \cos(a) + \cos(a + b) + \dots + \cos(a + nb)$$

$$S = \sum_{k=0}^{n} \sin(a + kb) = \sin(a) + \sin(a + b) + \dots + \sin(a + nb)$$

- 1. Calculer C et S lorsque $b \in 2\pi \mathbb{Z}$.
- 2. On suppose maintenant que $b \notin 2\pi \mathbb{Z}$. Montrer que

$$C + iS = e^{i\left(\frac{nb}{2} + a\right)} \frac{\sin\left(\frac{n+1}{2}b\right)}{\sin\left(\frac{b}{2}\right)}.$$

et en déduire C et S.

Rab

Exercice 13 On pose $z_1 = 1 + i$, $z_2 = \sqrt{3} + i$ et $z_3 = \frac{z_1}{z_2}$.

- 1. Déterminer la forme algébrique de z_3 puis sa forme polaire.
- 2. En déduire $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$.

Exercice 14

- 1. En utilisant la formule de Moivre, calculer $\sin\left(\frac{\pi}{5}\right)$.
- 2. Simplifier $\sqrt{2}\sqrt{3+\sqrt{5}}$. En déduire $\cos\left(\frac{\pi}{5}\right)$.
- 3. Déterminer $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$.

Exercice 15 Calculer $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$ en utilisant des formules trigonométriques. En déduire une expression simple de

$$\left(\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}}\right)^8.$$

Exercice 16 Soit $z \in \mathbb{U}$. Calculer $|1+z|^2 + |1-z|^2$.

Exercice 17 Soit $\theta \not\equiv \pi$ [2 π]. Simplifier $\frac{1+e^{i\theta}}{1+e^{-i\theta}}$.

Exercice 18 Soit $x \in \mathbb{R}$. Linéariser les expressions suivantes.

1.
$$\sin^5(x)$$

$$2. \cos(x) \cos^2(2x)$$