

2025-2026

TD7

Equations et géométrie complexes

Exercice 1 Déterminer les racines carrées dans \mathbb{C} des complexes suivants.

1.
$$z_1 = -15 + 8i$$

2.
$$z_2 = 7 - 24i$$

Exercice 2 Résoudre les équations suivantes d'inconnu $z \in \mathbb{C}$.

1.
$$z^2 - (3+4i)z - 1 + 5i = 0$$
.

1.
$$z^2 - (3+4i)z - 1 + 5i = 0$$
.
2. $z^4 - (5-14i)z^2 - 2(12+5i) = 0$.

Exercice 3 On pose $\omega = e^{i\frac{2\pi}{7}}$ et on définit

$$S = \omega + \omega^2 + \omega^4$$
 et $T = \omega^3 + \omega^5 + \omega^6$.

$$T = \omega^3 + \omega^5 + \omega^6.$$

Calculer S + T et ST et en déduire S et T.

Exercice 4 Soit $n \in \mathbb{N}$, $n \ge 3$. Calculer la longueur d'un côté d'un polygone régulier à n côtés inscrit dans le cercle unité.

Exercice 5 Soit M un point du plan complexe d'affixe $z = a + ib \in \mathbb{C}$, avec $(a, b) \in \mathbb{R}^2$, I le point d'affixe i et N l'image de M par la rotation de centre O et d'angle $\frac{\pi}{3}$.

- 1. Démontrer que les points M, I et N sont alignés si et seulement si $\left(a-\frac{1}{2}\right)^2$ + $(b-\frac{1}{2})^2=\frac{1}{2}$ et en déduire l'ensemble des points M solutions.
- 2. Déterminer l'ensemble des points M(z) tels que MIN soit rectangle en I.
- 3. Déterminer l'ensemble des points M(z) tels que MIN soit équilatéral. Donner le résultat sous forme polaire.

Pour aller plus loin

Exercice 6 Soit $(x, y, z) \in \mathbb{U}^3$. Montrer que |x + y + z| = |xy + xz + yz|.

Exercice 7 Pour chacun des systèmes suivants, déterminer les complexes $(u,v) \in \mathbb{C}^2$ solutions.

$$1. \begin{cases} u+v = \\ uv = 2 \end{cases}$$

2.
$$\begin{cases} u+v=3\\ \frac{1}{u}+\frac{1}{v}=\frac{9+3i}{10} \end{cases}$$

3.
$$\begin{cases} u+v=1\\ u^2+v^2=-1+2x \end{cases}$$

4.
$$\begin{cases} u^2v + uv^2 = 0 \\ u^3 + v^3 = 9 \end{cases}$$

Exercice 8 Soit $n \in \mathbb{N}$, $n \ge 2$.

- 1. Factoriser dans \mathbb{C} le polynôme $P(z) = z^{n-1} + \cdots + z + 1$
- 2. Démontrer que $\prod_{k=1}^{n-1} \left(1 e^{\frac{2ik\pi}{n}}\right) = n$.
- 3. En déduire que $\prod_{n=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$.

Rab

Exercice 9 Déterminer les racines carrées dans \mathbb{C} des complexes suivants.

1.
$$z_1 = 7 + 4i$$

2.
$$z_2 = 9 + 40i$$

Exercice 10 Résoudre les équations suivantes d'inconnu $z \in \mathbb{C}$.

1.
$$(2+i)z^2 - (5-i)z + 2 - 2i = 0$$
.
2. $z^4 - (3+8i)z^2 - 16 + 12i = 0$.

2.
$$z^4 - (3 + 8i)z^2 - 16 + 12i = 0$$

3.
$$z^4 + (3-6i)z^2 - 2(4+3i) = 0$$
.
4. $z^4 + (2i-1)z^2 - 1 - i = 0$.

4.
$$z^4 + (2i - 1)z^2 - 1 - i = 0$$

Exercice 11 Déterminer toutes les solutions réelles et imaginaires pures de l'équation d'inconnu $z \in \mathbb{C}$.

$$z^4 - 4(1+i)z^3 + 12iz^2 + 8(1-i)z - 5 = 0.$$

En déduire toutes les solutions complexes.

Exercice 12 Résoudre l'équation suivante d'inconnu $z \in \mathbb{C}$, $z^4 = \frac{16\sqrt{2}}{1-z}$.

Exercice 13 Déterminer les racines quatrièmes dans \mathbb{C} du complexe Z=-119+120i

Exercice 14 Soit $n \in \mathbb{N}^*$. Résoudre l'équation suivante d'inconnu $z \in \mathbb{C}$, $z^n = \overline{z}$.

Exercice 15 Soient A(2+4i) et B(8+i) deux points du plan complexe $(O; \vec{i}, \vec{j})$ Montrer que le triangle OAB est rectangle.

Exercice 16 Dans chacun des cas suivants, déterminer l'ensemble des points M(z)du plan complexe dont l'affixe $z \in \mathbb{C}$ vérifie l'égalité donnée.

$$1. \left| \frac{z-3}{z-5} \right| = 1$$

$$2. \left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}$$

Exercice 17 Soient A(a), B(b) et C(c) trois points du plan complexes.

1. Démontrer que si $c = e^{i\frac{\pi}{3}}(b-a) + a$ alors.

$$a^2 + b^2 + c^2 = ab + ac + bc.$$

2. On fixe $a \in \mathbb{C}$ l'affixe de A et $b \in \mathbb{C}$ l'affixe de C. Déterminer l'ensemble des points C(c), $c \in \mathbb{C}$ vérifiant $a^2 + b^2 + c^2 = ab + ac + bc$. Que peut-on alors dire du triangle ABC?