

Colle du 09/09 - Sujet 1 Révisions d'algèbre linéaire

Question de cours

- 1. Enoncer le théorème du rang et donner la caractérisation des isomorphismes.
- 2. Montrer que le noyau d'une application linéaire est un espace vectoriel.

Exercice 1. Soient $E = \mathbb{R}^3$, $\mathscr{C} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $F = \text{Vect}(e_1, e_2)$. On note $\mathscr{L}_F(E)$ l'ensemble des endomorphismes de E laissant F stable. Montrer que $\mathscr{L}_F(E)$ est un espace vectoriel et déterminer sa dimension.

Exercice 2. Pour tout $P \in \mathbb{K}[X]$, on pose $\varphi(P) = P\left(\frac{X}{2}\right) + P\left(1 - \frac{X}{2}\right) - 2P(X)$.

- 1. Discuter du degré de $\varphi(P)$ en fonction de celui de P.
- 2. Déterminer le noyau de φ .
- 3. On pose $Q_0=1$ et pour tout $n\in\mathbb{N}^*,\ Q_n=\varphi\left(X^n\right)$. Montrer que (Q_0,\ldots,Q_n) est une base de $\mathbb{K}_n[X]$.
- 4. Soit $\Theta: P \mapsto \int_0^1 P(t) dt$. Montrer que $\operatorname{Im}(\varphi) = \operatorname{Ker}(\Theta)$.

Colle de mathématiques PT

2023-2024

Colle du 09/09 - Sujet 2 Révisions d'algèbre linéaire

Question de cours

- 1. Définir une base et les coordonnées d'un vecteur dans une base.
- 2. Montrer que si f est un projecteur de E, alors...

Exercice 1. Soit
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 et $\Delta = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid AM = MA \}$.

- 1. Montrer que Δ est un espace vectoriel et en déterminer une base.
- 2. Préciser un supplémentaire de Δ dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 2. Soient $n \in \mathbb{N}^*$, $p \in \mathbb{N}^*$, E un \mathbb{K} -espace vectoriel de dimension n et $(\varphi_1, \dots, \varphi_p) \in \mathscr{L}(E, \mathbb{K})^p$ une famille libre. On considère $\Psi: \begin{array}{ccc} E & \to & \mathbb{K}^p \\ x & \mapsto & \left(\varphi_1(x), \varphi_2(x), \cdots, \varphi_p(x)\right) \end{array}$.

- 1. Montrer que $\operatorname{Ker}(\Psi) = \operatorname{Ker}(\varphi_1) \cap \cdots \cap \operatorname{Ker}(\varphi_n)$.
- 2. Déterminer le rang de Ψ .
- 3. En déduire la dimension de $\operatorname{Ker}(\varphi_1) \cap \cdots \cap \operatorname{Ker}(\varphi_p)$.

Colle du 09/09 - Sujet 3 Révisions d'algèbre linéaire

Question de cours

- $1. \ {\it Caract\'eriser} \ {\it les suppl\'ementaires} \ {\it en dimension finie}.$
- 2. Démontrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathscr{M}_n(\mathbb{R})$.

Exercice 1. Montrer que $\mathscr{B} = (X - 1, X + 1, X^2)$ est une base de $\mathbb{R}_2[X]$ et déterminer les coordonnées de $P \in \mathbb{R}_2[X]$ dans cette base.

Exercice 2. Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente d'ordre $n : A^{n-1} \neq 0_n$ et $A^n = 0_n$. Montrer que A est semblable à la matrice

$$\begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix}$$