

Epreuve de mathématiques 2 2025-2026

L'usage de la calculatrice n'est pas autorisé Durée : 4h

Encadrer les résultats et numéroter les copies

Problème 1 - Trigonométrie

- 1. Soit $x \in \mathbb{R}$.
 - (a) Exprimer $\cos(2x)$ en fonction de $\cos(x)$.
 - (b) Exprimer $\cos(3x)$ en fonction de $\cos(x)$ uniquement.
 - (c) Exprimer $\sin(3x)$ en fonction de $\sin(x)$ uniquement.

Partie 1 : Première méthode

On pose $\theta = \frac{\pi}{5}$.

- 2. Calculer $\cos(2025\theta)$.
- 3. Exprimer $\cos(3\theta)$ en fonction de $\cos(2\theta)$.
- 4. En déduire une équation vérifiée par $\cos(\theta)$.
- 5. Déterminer trois réels $(a, b, c) \in \mathbb{R}^3$ tels que $4X^3 + 2X^2 3X 1 = (X+1)(aX^2 + bX + c)$.
- 6. En déduire la valeur de $\cos\left(\frac{\pi}{5}\right)$.
- 7. En déduire la valeur de tan $(\frac{\pi}{5})$.

Partie 2 : Deuxième méthode

- 8. Résoudre dans \mathbb{R} l'équation $\sin\left(\frac{x}{2}\right) = 0$.
- 9. Montrer que pour tout $\varphi \in \mathbb{R}$, $(2\cos(\varphi) + 1)\sin(\frac{\varphi}{2}) = \sin(\frac{3\varphi}{2})$.
- 10. En déduire que pour tout $a \in \mathbb{R}$ et tout $\varphi \in]0; 2\pi[$, on a

$$\cos(a) + \cos(a + \varphi) + \cos(a + 2\varphi) = \cos(a + \varphi) \frac{\sin(\frac{3\varphi}{2})}{\sin(\frac{\varphi}{2})}.$$

- 11. En prenant $a = \theta$ et $\varphi = 2\theta$, montrer que $\cos(\theta) + \cos(3\theta) = \frac{1}{2}$.
- 12. Linéariser $\cos(\theta)\cos(3\theta)$.
- 13. A l'aide de la question 3., en déduire que $\cos(\theta)\cos(3\theta) = -\frac{1}{4}$.
- 14. Déduire des questions précédentes une équation du second degré vérifiée par $\cos{(\theta)}$.
- 15. Retrouver la valeur de $\cos\left(\frac{\pi}{5}\right)$.

Partie 3 : Une inéquation trigonométrique

On souhaite résoudre l'inéquation trigonométrique suivante d'inconnue $x \in \mathbb{R}$:

(E)
$$\cos^3(x)\sin(3x) + \sin^3(x)\cos(3x) \leqslant \frac{\sqrt{3}}{4}(1-\cos(4x)).$$

- 16. Soit $x \in \mathbb{R}$. On pose $A = \cos^3(x)\sin(3x) + \sin^3(x)\cos(3x)$.
 - (a) Montrer que $A = 3\sin(x)\cos(x) [\cos^2(x) \sin^2(x)]$.
 - (b) En déduire que $A = \lambda \sin(u)$, où u est un réel que l'on précisera en fonction de x et λ un réel que l'on précisera également.
- 17. Résoudre (E).

Problème 2 - Complexes

Pour tout $\alpha \in \mathbb{C}$, on définit

$$f:$$
 $\begin{array}{ccc} \mathbb{C}^* & \to & \mathbb{C} \\ z & \mapsto & \frac{z^2 + \alpha}{2z} \end{array}$

Partie 1 : Quelques calculs

- 1. Calculer la forme polaire de 2i et de $\sqrt{3} i$.
- 2. On suppose que $\alpha = 4i$.
 - (a) Calculer f(2i) et préciser sa forme polaire.
 - (b) Calculer $f(\sqrt{3}-i)$ et préciser sa forme polaire.
- 3. On suppose que $\alpha = 1$.
 - (a) Soit $z \in \mathbb{U}$. Montrer que $f(z) \in \mathbb{R}$.
 - (b) Soit $\theta \in \mathbb{R}$. Calculer $f(e^{i\theta})$.
 - (c) En déduire que $f(\mathbb{U}) = [-1; 1]$. On procédera pour double inclusion.
- 4. On suppose que $\alpha \in \mathbb{R}_+^*$. Déterminer $f^{\leftarrow}(i\mathbb{R}) = \{z \in \mathbb{C}^* \mid f(z) \in i\mathbb{R}\}.$

Partie 2: Etude d'une suite complexe

Soit $\beta \in \mathbb{C}$ tel que $\operatorname{Re}(\beta) > 0$. On pose alors $\alpha = \beta^2$ et on note $\mathcal{P}_+ = \left\{ z \in \mathbb{C} \mid \operatorname{Re}\left(\frac{z}{\beta}\right) > 0 \right\}$.

- 5. Soit $z = a + ib \in \mathbb{C} \setminus i\mathbb{R}$.
 - (a) Justifier que $z \neq 0$ et calculer la forme algébrique de $\frac{1}{z}$.
 - (b) Montrer que $\operatorname{Re}(z)\operatorname{Re}\left(\frac{1}{z}\right) > 0$.
- 6. Soit $z \in \mathbb{C}$ tel que $\frac{z}{\beta} \in \mathbb{C} \setminus i\mathbb{R}$. Montrer que $\operatorname{Re}\left(\frac{z}{\beta}\right) \operatorname{Re}\left(\frac{\alpha}{\beta z}\right) > 0$.
- 7. Démontrer $f(\mathcal{P}_+) \subseteq \mathcal{P}_+$.

On fixe $z_0 = \alpha$ et pour tout $n \in \mathbb{N}$, on pose

$$z_{n+1} = f(z_n)$$
 et $w_n = \frac{z_n - \beta}{z_n + \beta}$.

- 8. Montrer que pour tout $n \in \mathbb{N}$, z_n existe et $z_n \in \mathcal{P}_+$.
- 9. En déduire que pour tout $n \in \mathbb{N}$, w_n existe.
- 10. Montrer que pour tout $n \in \mathbb{N}$, $w_{n+1} = (w_n)^2$.
- 11. En déduire pour tout $n \in \mathbb{N}$, une expression de w_n en fonction de w_0 et de n.
- 12. (a) Démontrer que $|\beta 1|^2 < |\beta + 1|^2$.
 - (b) En déduire que $|w_0| < 1$.
 - (c) En déduire également que pour tout $n \in \mathbb{N}$, $|w_n| < 1$.
- 13. Montrer que pour tout $n \in \mathbb{N}$, $z_n = \beta \frac{1+w_n}{1-w_n}$.
- 14. On rappelle que pour $q \in \mathbb{C}$, si |q| < 1, alors $\lim_{n \to +\infty} q^n = 0$. Conclure en donnant la limite de z_n .

Problème 3 - Calcul algébrique

Pour tout $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k}.$$

On se propose de calculer S_n par deux méthodes.

Partie 1 : Méthode 1

Pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$, on pose également

$$f_n(x) = \sum_{k=0}^n x^k \binom{n}{k}.$$

- 1. Préciser S_0 , S_1 , S_2 et S_3 .
- 2. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$, calculer $f_n(x)$.
- 3. Soit $n \in \mathbb{N}$. Déterminer une primitive de f_n sur \mathbb{R} .
- 4. En déduire qu'il existe $K_n \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \quad \sum_{k=0}^{n} \frac{x^{k+1}}{k+1} \binom{n}{k} = \frac{(x+1)^{n+1}}{n+1} + K_n.$$

- 5. Déterminer la valeur de K_n .
- 6. En déduire le calcul de S_n .
- 7. Vérifier la cohérence de votre résultat avec la question 1.

Partie 2 : Méthode 2

Soit $n \in \mathbb{N}$.

- 8. Montrer que pour tout $k \in [0; n]$, $\frac{1}{k+1} {n \choose k} = \frac{1}{n+1} {n+1 \choose k+1}$.
- 9. Retrouver alors la valeur S_n .
- 10. En déduire le calcul de $T_n = \sum_{k=0}^n \frac{1}{n-k+1} \binom{n}{k}$.

Partie 3: La série harmonique

On s'intéresse maintenant à la somme suivante : on pose pour tout $n \in \mathbb{N}^*$,

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 11. Calculer H_1 , H_2 , H_3 et H_4 .
- 12. Soit $n \in \mathbb{N}^*$. Exprimer H_{n+1} en fonction de H_n .
- 13. En déduire que la suite $(H_n)_{n\in\mathbb{N}^*}$ est strictement croissante.
- 14. Soit $p \in \mathbb{N}^*$. Ecrire $H_{2p} H_p$ sous la forme d'une unique somme.

- 15. A l'aide d'un encadrement de $\frac{1}{k}$, montrer que pour tout $p \in \mathbb{N}^*$, $\frac{1}{2} \leqslant H_{2p} H_p \leqslant 1$.
- 16. Montrer par récurrence que pour tout $n \in \mathbb{N}, H_{2^n} \geqslant \frac{n}{2} + 1$.

Partie 4 : Avec une décomposition en éléments simples

On pose pour tout $n \in \mathbb{N}^*$, $V_n = \sum_{k=1}^n \frac{H_k}{(k+1)(k+2)}$.

- 17. Déterminer a et b deux réels tels que pour tout $k \in \mathbb{N}$, $\frac{1}{(k+1)(k+2)} = \frac{a}{k+1} + \frac{b}{k+2}$.
- 18. En déduire pour tout $n \in \mathbb{N}^*$ la valeur de $U_n = \sum_{k=1}^n \frac{1}{(k+1)(k+2)}$.
- 19. Soit $n \in \mathbb{N}^*$. Montrer que $V_n = \sum_{k=1}^n \left(\frac{H_k}{k+1} \frac{H_{k+1}}{k+2} \right) + U_n$.
- 20. En déduire une expression de V_n en fonction de H_{n+1} .

Partie 5 : Dans deux sommes doubles

Soit $n \in \mathbb{N}$.

- 21. (a) Ecrire $\sum_{k=1}^{n} H_k$ comme une somme double.
 - (b) En intervertissant l'ordre de sommation, en déduire que $\sum_{k=1}^{n} H_k = (n+1) H_n n$.
 - (a) On suppose $n \ge 2$ et on fixe $i \in [1; n-1]$. Montrer que $\sum_{j=i+1}^{n} \frac{1}{j-i} = H_m$ où m est un entier que l'on précisera.
 - (b) En déduire que $\sum_{1 \le i < j \le n} \frac{1}{j-i} = n (H_n 1).$

Partie 6 : Avec des coefficients binomiaux

On pose pour tout $n \in \mathbb{N}^*$ et tout $m \in [0; n]$, $B_{n,m} = \sum_{k=1}^n \binom{k}{m} H_k$.

22. Pour tout $n \in \mathbb{N}$, on pose

$$\mathscr{P}(n): \quad \forall m \in [0; n], \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

Démontrer que pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie.

23. Soient $n \in \mathbb{N}^*$ et $m \in [0; n]$. A l'aide de la question 8. calculer

$$\sum_{i=1}^{n} \frac{1}{i} \binom{i}{m+1} = \frac{1}{m+1} \binom{n}{m+1}.$$

- 24. Ecrire $B_{n,m}$ sous la forme d'une somme double.
- 25. En déduire des questions précédentes que $B_{n,m} = \binom{n+1}{m+1} H_n \frac{1}{m+1} \binom{n}{m+1}$.
- 26. Conclure que $B_{n,m} = \binom{n+1}{m+1} \left(H_{n+1} \frac{1}{m+1} \right)$.