2025-2026

Correction de l'interrogation 02 Fonctions réelles

- 1. (a) Comment obtient-on le graphe de $g_1: x \mapsto f(x) + a$?

 Solution. A partir du graphe de f, on obtient le graphe de g_1 par une translation de vecteur $a\overrightarrow{j}$.
 - (b) Définir une fonction paire. Que dire de son graphe? Solution. Soient $U \subseteq \mathbb{R}$, $f \in \mathcal{F}(U, \mathbb{R})$. La fonction f est paire si
 - U est centré en 0,
 - $\forall x \in \mathbb{R}, f(-x) = f(x).$

Le graphe de f est alors symétrique par rapport à (Oy).

2. Soit $f: x \mapsto \frac{\ln(\sqrt{x^2-4})}{e^{2x}-e^{-2x}}$. Déterminer le domaine de définition de f puis déterminer sa parité. Solution. Soit $x \in \mathbb{R}$. On a l'équivalence suivante :

$$f(x)$$
 existe \Leftrightarrow
$$\begin{cases} x^2 - 4 \ge 0 \\ \sqrt{x^2 - 4} > 0 \\ e^{2x} - e^{-2x} \ne 0 \end{cases}$$

Or

$$e^{2x} - e^{-2x} = 0$$
 \Leftrightarrow $e^{2x} = e^{-2x}$ \Leftrightarrow $2x = -2x$ \Leftrightarrow $x = 0$

Ainsi,

$$f(x) \text{ existe} \qquad \Leftrightarrow \qquad \begin{cases} x^2 - 4 > 0 \\ x \neq 0 \end{cases} \qquad \Leftrightarrow \qquad \begin{cases} x^2 > 4 \\ x \neq 0 \end{cases} \qquad \Leftrightarrow \qquad \begin{cases} x > 2 \text{ OU } x < -2 \\ x \neq 0. \end{cases}$$

Ainsi, le domaine de définition de f est

$$\mathcal{D}_f =]-\infty; -2[\cup]2; +\infty[.$$

On a les points suivants :

- \mathcal{D}_f est centré en 0.
- Pour tout $x \in \mathcal{D}_f$,

$$f(-x) = \frac{\ln\left(\sqrt{(-x)^2 - 4}\right)}{e^{-2x} - e^{2x}} = \frac{\ln\left(\sqrt{x^2 - 4}\right)}{-\left(e^{2x} - e^{-2x}\right)} = -f(x).$$

Conclusion,

la fonction
$$f$$
 est impaire.

- 3. Montrer que l'équation $e^{2x} + e^{-5x} = 3$ admet une solution sur $[0; +\infty[$. **Solution.** Soit $f: x \mapsto e^{2x} + e^{-5x}$.
 - (i) La fonction f est bien définie et même continue sur $[0; +\infty[$.
 - (ii) De plus f(0) = 2 < 3 et $f(1) = e^2 + e^{-5} > e^2 > 2^2 = 4 > 3$. Donc $3 \in [f(0); f(1)]$.

Donc d'après le théorème des valeurs intermédiaires, il existe $c \in [0; 1] \subseteq [0; +\infty[$ tel que f(c) = 3. Conclusion,

$$\exists c \in [0; 1] \subseteq [0; +\infty[, e^{2c} + e^{-5c} = 3.$$

4. Déterminer le tableau de variations de $g: x \mapsto \frac{\ln(x)}{\sqrt{x}}$ sur son domaine de définition. Solution. Soit $x \in \mathbb{R}$. On a les équivalences suivantes :

$$g(x)$$
 existe \Leftrightarrow $\begin{cases} x > 0 \\ \sqrt{x} \neq 0 \end{cases} \Leftrightarrow x > 0.$

La fonction g est donc définie sur \mathbb{R}_+^* . Pour la dérivabilité, on fait attention à cause de la racine carrée qui n'est pas dérivable sur son ensemble de définition. Soit x > 0. On a

$$g \text{ dérivable en } x \qquad \Leftrightarrow \qquad \begin{cases} x > 0 \text{(pour le ln)} \\ x > 0 \text{(pour la racine)} \\ \sqrt{x} \neq 0 \end{cases} \Leftrightarrow \qquad x > 0.$$

Donc g est dérivable sur \mathbb{R}_+^* . De plus,

$$\forall x \in \mathbb{R}_+^*, \qquad g'(x) = \frac{\frac{1}{x}\sqrt{x} - \ln(x)\frac{1}{2\sqrt{x}}}{x} = \frac{\frac{1}{x}\sqrt{x} \times 2\sqrt{x} - \ln(x)}{2x\sqrt{x}} = \frac{2 - \ln(x)}{2x\sqrt{x}}.$$

Soit $x \in \mathbb{R}_+^*$, on a

$$g'(x) > 0$$
 \Leftrightarrow $\frac{2 - \ln(x)}{2x\sqrt{x}} > 0$ \Leftrightarrow $2 - \ln(x) > 0$ $\operatorname{car} 2x\sqrt{x} > 0$ \Leftrightarrow $2 > \ln(x)$ \Leftrightarrow $x < e^2$.

On en déduit le tableau suivant :

x	0	e^2	$+\infty$
g		1	

Or

$$\lim_{\substack{x \to 0 \\ x > 0}} g(x) = \frac{-\infty}{0^+} = -\infty.$$

Puis $g\left(e^2\right) = \frac{\ln\left(e^2\right)}{\sqrt{e^2}} = \frac{2}{e} = 2\,e^{-1}$. Enfin, par croissance comparée,

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}} = 0.$$

Conclusion,

$$\begin{array}{|c|c|c|c|c|}\hline x & 0 & e^2 & +\infty \\ \hline & & & \\ g & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

5. Pour tout $n \in \mathbb{N}$, déterminer les dérivées n-ièmes de $H: x \mapsto x e^{2x}$. Solution. Pour tout $n \in \mathbb{N}$, la fonction H est n fois dérivable sur \mathbb{R} comme produit de fonctions qui le sont. De plus, on a pour tout $x \in \mathbb{R}$,

$$H(x) = x e^{2x}$$

$$H'(x) = e^{2x} + 2x e^{2x} = (2x+1) e^{2x}$$

$$H''(x) = 2 e^{2x} + 2(2x+1) e^{2x} = (4x+4) e^{2x}$$

$$H^{(3)}(x) = 4 e^{2x} + 2(4x+4) e^{2x} = (8x+12) e^{2x}$$

$$H^{(4)}(x) = 8 e^{2x} + 2(8x+12) e^{2x} = (16x+32) e^{2x}$$

Posons pour tout $n \in \mathbb{N}$,

$$\mathscr{P}(n)$$
: $\forall x \in \mathbb{R}, \ H^{(n)}(x) = (2^n x + n2^{n-1}) e^{2x}.$

Procédons par récurrence.

Initialisation. Si n = 0, alors pour tout $x \in \mathbb{R}$, $(2^n x + n2^{n-1}) e^x = (2^0 x + 0) e^{2x} = x e^{2x} = H(x)$. Donc $\mathscr{P}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$. Soit $n\in\mathbb{N}$. Montrons que $\mathscr{P}(n)\ \Rightarrow\ \mathscr{P}(n+1)$. Supposons $\mathscr{P}(n)$ vraie :

$$\forall x \in \mathbb{R}, \qquad H^{(n)}(x) = (2^n x + n2^{n-1}) e^{2x}.$$

En dérivant car $H^{(n)}$ est dérivable sur \mathbb{R} , on obtient,

$$\forall x \in \mathbb{R}, \qquad H^{(n+1)}(x) = \left(H^{(n)}\right)'(x)$$

$$= 2^n e^x + 2\left(2^n x + n2^{n-1}\right) e^{2x}$$

$$= \left(2^n + 2^{n+1} x + n2^n\right) e^{2x}$$

$$= \left(2^{n+1} x + (n+1) 2^n\right) e^{2x}.$$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion, pour tout $n \in \mathbb{N}$, H est n fois dérivable sur \mathbb{R} et pour tout $n \in \mathbb{N}$,

$$\forall x \in \mathbb{R}, \qquad H^{(n)}(x) = (2^n x + n2^{n-1}) e^{2x}.$$