M1 MEEF 2015-2016

Séquence 3

Feuille 2. Les espaces vectoriels normés.

Exercice 1. On munit \mathbb{R}^n avec $n \in \mathbb{N}^*$ des trois normes usuelles, pour $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_1 = \sum_{k=1}^n |x_k|, \qquad ||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}, \qquad ||x||_\infty = \max_{1 \le k \le n} |x_k|.$$

- 1. Dessiner les boules unités associées à ces normes lorsque n=2.
- 2. Vérifier les inégalités suivantes et montrer que ces inégalités sont optimales.

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1} \le \sqrt{n} \, ||x||_{2} \le n \, ||x||_{\infty} \, .$$

Rappel: $\forall (a,b) \in \mathbb{R}^2, \ 2ab \leqslant a^2 + b^2.$

Exercice 2. Soit $E = \mathscr{C}([a, b], \mathbb{R})$, l'ensemble des fonctions continues de [a, b] dans \mathbb{R} où a < b sont deux réels. On munit E des trois normes usuelles, pour $f \in E$,

$$||f||_1 = \int_a^b |f(t)| dt, \qquad ||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt}, \qquad ||f||_\infty = \sup_{t \in [a,b]} |f(t)|.$$

1. Montrer les inégalités suivantes :

$$||f||_1 \le \sqrt{b-a} ||f||_2 \le (b-a) ||f||_{\infty}.$$

2. Montrer que deux quelconques de ces normes ne sont pas équivalentes.

Exercice 3. Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$, l'ensemble des fonctions de classe \mathcal{C}^1 de [0,1] dans \mathbb{R} . Montrer que

$$N_1(f) = ||f||_{\infty} + ||f'||_{\infty}$$
 et $N_2(f) = |f(0)| + ||f'||_{\infty}$,

sont deux normes équivalentes.

Exercice 4. Soit E l'ensemble des fonctions de classe \mathscr{C}^1 de [0,1] dans \mathbb{R} s'annulant en 0. Pour $f \in E$ on définit $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $||f||'_{\infty} = \sup_{t \in [0,1]} |f'(t)|$.

- 1. Montrer que $\|.\|_{\infty}'$ n'est pas une norme sur $\mathscr{C}^1([0,1],\mathbb{R})$.
- 2. Montrer que $\|.\|_{\infty}$ et $\|.\|'_{\infty}$ sont deux normes sur E.
- 3. Montrer que ces deux normes ne sont pas équivalentes sur E.

Exercice 5. Soit $E = \mathscr{C}^1([0,1],\mathbb{R})$, l'ensemble des fonctions de classe \mathscr{C}^1 de [0,1] dans \mathbb{R} . Montrer que

$$N_1(f) = |f(0)| + ||f'||_1$$
 et $N_2(f) = ||f||_1 + ||f'||_{\infty}$,

sont deux normes mais que ces deux normes ne sont pas équivalentes.

Exercice 6. Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$, l'ensemble des fonctions de classe \mathcal{C}^1 de [0,1] dans \mathbb{R} .

1. Montrer que

$$||f|| = \left(f^2(0) + \int_0^1 (f'(t))^2 dt\right)^{1/2}, \quad \forall f \in E,$$

définit une norme sur E.

- 2. Montrer que pour tout $(a,b) \in \mathbb{R}^2$, on a $(a+b)^2 \leq 2a^2 + 2b^2$.
- 3. Démontrer que la convergence au sens de $\|.\|$ implique la convergence uniforme sur [0,1].

Exercice 7. Soit $E = \mathscr{C}([a,b],\mathbb{R})$, l'ensemble des fonctions continues de [a,b] dans \mathbb{R} où a < b sont deux réels. Soient $\alpha \in E$ tel que $\forall t \in [a,b], \alpha(t) > 0$ et $\varphi : E \times E \to \mathbb{R}$ définie par

$$\forall (f,g) \in E^2, \qquad \varphi(f,g) = \int_a^b \alpha(t)f(t)g(t) \, \mathrm{d}t.$$

- 1. Montrer que φ est une forme bilinéaire symétrique définie positive. En déduire que $N(f) = \sqrt{\varphi(f,f)}$, $\forall f \in E$, est une norme.
- 2. Montrer que N est équivalente à $\|.\|_2$ où l'on rappelle que $\|f\|_2 = \sqrt{\int_a^b f^2(t) dt}$.
- 3. On ne suppose plus dans cette question que $\forall t \in [a,b], \alpha(t) > 0$ mais on fixe α par $\forall t \in [a,b], \alpha(t) = \frac{t-a}{b-a}$. Montrer que φ est toujours définie positive mais que N et $\|.\|_2$ ne sont plus équivalentes.

Exercice 8. On considère E l'ensemble des fonctions f de [0,1] dans \mathbb{C} admettant un développement en série trigonométrique, $\forall x \in [0,1], f(x) = \sum_{n=-\infty}^{+\infty} c_n(f) e^{i2\pi nx}$, avec $(c_n(f))_{n\in\mathbb{Z}} \in \mathbb{C}^{\mathbb{N}}$ telle que $\sum_{n=-\infty}^{+\infty} |c_n(f)| < +\infty$.

- 1. Montrer que E est un \mathbb{C} -espace vectoriel et pour $(f,g) \in E^2$, $\lambda \in \mathbb{C}$ préciser $c_n(f+g)$ et $c_n(\lambda f)$.
- 2. Montrer que $||f|| = \sum_{n=-\infty}^{+\infty} |c_n(f)|$ est une norme sur E.

Exercice 9. Soient (a_0, a_1, \ldots, a_n) et (b_0, b_1, \ldots, b_n) deux éléments de \mathbb{C}^{n+1} . Pour $P \in \mathbb{C}_n[X]$, un polynôme de degré au plus n, on pose

$$N_1(P) = \sum_{k=0}^{n} |P(a_k)|$$
 et $N_2(P) = \sum_{k=0}^{n} |P(b_k)|$.

- 1. Démontrer que N_1 et N_2 définissent des normes sur $\mathbb{C}_n[X]$.
- 2. Justifier que ces normes sont équivalentes.
- 3. Déterminer une constante c telle que pour tout $P_i n \mathbb{C}_n[X]$,

$$N_1(P) \leqslant cN_2(P)$$
,

en fonctions des a_k et b_k .

Indication : puisque P passe par $P(a_k)$ aux points a_k il est égal au polynôme interpolateur de Lagrange associé.

Exercice 10. Soient $(E, \|.\|)$ un espace vectoriel normé, r > 0, $a \in E$. On note

$$B(a, r = \{x \in E, \|x - a\| < r\})$$
 $B(a, r = \{x \in E, \|x - a\| \le r\}.$

Montrer que l'adhérence de B(a, r[est $\overline{B(a, r[} = B(a, r]$ et que l'intérieur de B(a, r] est B(a, r[= B(a, r[.

Exercice 11. Soit $(E, \|.\|)$ un espace vectoriel normé, X un compact de E et Y un fermé de E. Montrer que l'ensemble $X + Y = \{x + y, \ x \in X, \ y \in Y\}$ est fermé.

Exercice 12. Montrer que tout compact d'un espace vectoriel normé est fermé et borné.