

TD12Analyse asymptotique

Comparaisons de suites

Exercice 1 Classer les suites dont les termes généraux sont les suivants par ordre de négligeabilité.

1.
$$\frac{1}{n}$$
, $\frac{1}{n^2}$, $\frac{\ln(n)}{n}$, $\frac{\ln n}{n^2}$, $\frac{1}{n\ln(n)}$

1.
$$\frac{1}{n}$$
, $\frac{1}{n^2}$, $\frac{\ln(n)}{n}$, $\frac{\ln n}{n^2}$, $\frac{1}{n \ln(n)}$ 2. n , n^2 , $n \ln(n)$, $\sqrt{n \ln(n)}$, $\frac{n^2}{\ln(n)}$

Exercice 2 Trouver un équivalent simple des suites suivantes.

1.
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln(n) - 2n^2}$$

2.
$$u_n = \frac{\ln(n^2+1)}{n+1}$$

1.
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln(n) - 2n^2}$$
 2. $u_n = \frac{\ln(n^2 + 1)}{n + 1}$ 3. $u_n = \frac{1}{n - 1} - \frac{1}{n + 1}$

4.
$$u_n = \sin\left(\frac{1}{\sqrt{n+1}}\right)$$
 5. $u_n = 1 - \cos\left(\frac{1}{n}\right)$ 6. $u_n = \frac{n! + e^n}{2^n + 3^n}$

$$5. \quad u_n = 1 - \cos\left(\frac{1}{n}\right)$$

6.
$$u_n = \frac{n! + e^n}{2^n + 3^n}$$

7.
$$u_n = \ln\left(\sin\frac{1}{n}\right)$$

8.
$$u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt{n^2 - n + 1}}$$

7.
$$u_n = \ln\left(\sin\frac{1}{n}\right)$$
 8. $u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt{n^2 - n + 1}}$ 9. $u_n = \frac{2n^3 - \ln(n) + 1}{n^2 + 1}$

$$10. \ u_n = \frac{\sqrt{n+1-\sqrt{n}}}{n}$$

10.
$$u_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$
 11. $u_n = \sqrt{\ln(n+1) - \ln(n)}$

12.
$$u_n = \frac{(1 - e^{1/n})\sin\frac{1}{n}}{n^2 + n^3}$$

13.
$$u_n = \sqrt{n+1} - \sqrt{n-1}$$

Exercice 3 Déterminer les limites des suites $(u_n)_{n\in\mathbb{N}}$ définies pour tout $n\in\mathbb{N}^*$ par :

1.
$$u_n = n\sqrt{\ln\left(1 + \frac{1}{n^2 + 1}\right)}$$

$$2. \ u_n = \left(1 + \sin\left(\frac{1}{n}\right)\right)^n$$

3.
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$$

Exercice 4 Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de réels telle que $u_n+u_{n+1}\sim\frac{1}{n}$

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0^+ puis déterminer un équivalent simple de u_n .

Comparaisons de fonctions

Exercice 5 Déterminer un équivalent simple des expressions suivantes en $+\infty$:

1.
$$\frac{\sqrt{x^3+1}}{\sqrt[3]{x^2+1}}$$

$$2. \ \sqrt{x^2 + 1} + \sqrt{x^2 - 1}$$

3.
$$\sqrt{x^2+1} - \sqrt{x^2-1}$$

4.
$$\frac{\ln(x+1)}{\ln(x)} - 1$$

5.
$$\sqrt{\ln(x+1)} - \sqrt{\ln(x-1)}$$

6.
$$x \ln(x+1) - (x+1) \ln(x)$$

Exercice 6 Déterminer un équivalent simple des expressions suivantes en 0

1.
$$\sqrt{1+x^2} - \sqrt{1-x^2}$$

2.
$$tan(x) - sin(x)$$

3.
$$e^x + x - 1$$

4.
$$\ln(1 + \sin(x))$$

5.
$$\ln(e+x)$$

6.
$$\ln(\ln(1+x))$$

7.
$$e^{\tan(x)} - e^{\sin(x)}$$

8.
$$\frac{\arctan(x^2 - x^2 \cos x)}{1 - \sqrt{\cos x}}$$

7.
$$e^{\tan(x)} - e^{\sin(x)}$$
 8. $\frac{\arctan(x^2 - x^2 \cos x)}{1 - \sqrt{\cos x}}$ 9. $\ln^2(x+1) - \ln^2(1-x)$

Exercice 7 Déterminer un équivalent de $\ln(\cos(x))$ en $(\pi/2)^{-}$

Exercice 8 A l'aide d'équivalents, déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{x e^{-x} + x^2}{x - \ln(x)}$$

1.
$$\lim_{x \to +\infty} \frac{x e^{-x} + x^2}{x - \ln(x)}$$
 2. $\lim_{x \to +\infty} \frac{x \ln(x) - x}{x + \cos(x)}$ 3. $\lim_{x \to +\infty} \frac{\sqrt{x e^x - x^2}}{e^x + e^{-x}}$

3.
$$\lim_{x \to +\infty} \frac{\sqrt{x e^x - x^2}}{e^x + e^{-x}}$$

Exercice 9 Déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{x^{\ln(x)}}{\ln(x)}$$

1.
$$\lim_{x \to +\infty} \frac{x^{\ln(x)}}{\ln(x)}$$
2.
$$\lim_{x \to +\infty} \left(\frac{x}{\ln(x)}\right)^{\frac{\ln(x)}{x}}$$
3.
$$\lim_{x \to 0^+} \frac{x + \sin(x)}{x \ln(x)}$$

Calcul de développement limité

$$3. \lim_{x \to 0^+} \frac{x + \sin(x)}{x \ln(x)}$$

4.
$$\lim_{x \to 0^+} \frac{\ln(x) + x^2}{\ln(x + x^2)}$$
 5. $\lim_{x \to 1} \frac{\ln(x)}{x^2 - 1}$

5.
$$\lim_{x \to 1} \frac{\ln(x)}{x^2 - 1}$$

Exercice 10 Etudier les branches infinies de

$$f(x) = \frac{x^2 + 2x}{|x - 1| + x}$$
 et $g(x) = \frac{(x + 1)\ln(x + 1)}{\ln(x)}$.

Exercice 11 Déterminer les développements limités suivants :

1.
$$DL_3(\pi/4)$$
 de $x \mapsto \sin(x)$

2.
$$DL_4(1)$$
 de $x \mapsto \frac{\ln(x)}{x^2}$

3.
$$DL_5(0) \operatorname{de} x \mapsto \operatorname{sh}(x) \operatorname{ch}(2x) - \operatorname{ch}(x)$$

4.
$$DL_3(0)$$
 de $x \mapsto \ln\left(\frac{x^2+1}{x+1}\right)$

5.
$$DL_2(0)$$
 de $x \mapsto (1+x)^{1/x}$

6.
$$DL_3(0)$$
 de $x \mapsto e^{\sqrt{1+x}}$

7.
$$DL_3(0)$$
 de $x \mapsto \ln(2 + \sin(x))$

8.
$$DL_3(0)$$
 de $x \mapsto \sqrt{3 + \cos(x)}$

9.
$$DL_3(0)$$
 de $x \mapsto \ln(1 + e^x)$

10.
$$\mathrm{DL}_3\left(\frac{\pi}{3}\right) \ \mathrm{de} \ x \mapsto \cos(x)$$

11.
$$DL_3(0)$$
 de $x \mapsto \ln(1 + \sin(x))$

12.
$$\mathrm{DL}_3(1)$$
 de $x \mapsto \cos(\ln(x))$

13.
$$\mathrm{DL}_4(0)$$
 de $x \mapsto \ln\left(\frac{\mathrm{sh}(x)}{x}\right)$

14.
$$DL_3(0)$$
 de $x \mapsto \ln(3e^x + e^{-x})$

15.
$$DL_3(0)$$
 de $x \mapsto \ln(1 + \sqrt{1+x})$

16.
$$DL_3(0)$$
 de $x \mapsto \frac{\ln(1+x)}{e^x - 1}$

17.
$$\mathrm{DL}_2(0)$$
 de $x \mapsto \frac{\arctan(x)}{\tan(x)}$

18.
$$\mathrm{DL}_2(1)$$
 de $x \mapsto \frac{x-1}{\ln(x)}$

19.
$$DL_3(0)$$
 de $x \mapsto \frac{x - \sin(x)}{1 - \cos(x)}$

20.
$$\mathrm{DL}_2(0)$$
 de $x \mapsto \frac{\sin(x)}{\exp(x)-1}$

21.
$$\mathrm{DL}_3(0)$$
 de $x \mapsto \frac{x \operatorname{ch}(x) - \operatorname{sh}(x)}{\operatorname{ch}(x) - 1}$

22.
$$DL_4(1)$$
 de $x \mapsto e^x$

Exercice 12 Pour $n \in \mathbb{N}$, déterminer le $DL_{2n+2}(0)$ de $x \mapsto \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$.

Exercice 13 Soit $f \in \mathcal{C}^2(I, \mathbb{R})$.

1. Déterminer
$$\lim_{h\to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$
.

2. En déduire les fonctions f de classe \mathscr{C}^2 sur \mathbb{R} telles que $\forall (x,y) \in \mathbb{R}^2$, f(x+y) +f(x-y) = 2f(x)f(y).

Application à l'étude de fonctions

Exercice 14 A l'aide de développements limités, déterminer un équivalent simple des fonctions suivantes au voisinage de 0 :

1.
$$x \mapsto x(2 + \cos(x)) - 3\sin(x)$$
 2. $x \mapsto x^x - (\sin(x))^x$

2.
$$x \mapsto x^x - (\sin(x))^x$$

3.
$$x \mapsto \arctan(2x) - 2\arctan(x)$$

4.
$$\arctan \sqrt{1+x} - \arctan \sqrt{1-x}$$

Exercice 15 A l'aide de développements limités, déterminer les limites suivantes :

1.
$$\lim_{x \to 0} \frac{1}{\sin^2(x)} - \frac{1}{x}$$

1.
$$\lim_{x \to 0} \frac{1}{\sin^2(x)} - \frac{1}{x^2}$$
 2. $\lim_{x \to 0} \frac{1}{x} - \frac{1}{\ln(1+x)}$ 3. $\lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x}$

3.
$$\lim_{x \to 0} \frac{(1+x)^{1/x} - e^{-x}}{x}$$

4.
$$\lim_{x \to 0} \frac{e^x - x - \cos(x)}{x^2}$$

5.
$$\lim_{x \to 0} \frac{1}{x^3} - \frac{1}{\sin^3(x)}$$

4.
$$\lim_{x \to 0} \frac{e^x - x - \cos(x)}{x^2}$$
 5. $\lim_{x \to 0} \frac{1}{x^3} - \frac{1}{\sin^3(x)}$ 6. $\lim_{x \to 0} \left(\frac{\tan(x)}{x}\right)^{\frac{1}{x^2}}$

7.
$$\lim_{x \to +\infty} \left(\cosh\left(\frac{1}{x}\right)\right)^{x^2}$$

7.
$$\lim_{x \to +\infty} \left(\cosh\left(\frac{1}{x}\right)\right)^{x^2}$$
 8. $\lim_{x \to +\infty} x - x^2 \ln\left(1 + \frac{1}{x}\right)$

9.
$$\lim_{x \to +\infty} \sqrt{x^2 + 3x + 2} - x$$

Exercice 16 Montrer que la fonction

$$f: x \mapsto \frac{x}{\mathrm{e}^x - 1}$$

peut être prolongée en une fonction de classe \mathscr{C}^1 sur \mathbb{R} . Préciser l'équation de la tangente en x=0 et la position de cette tangente et de la courbe.

Exercice 17 On note f la fonction définie par f(0) = 0 et pour tout $x \in \mathbb{R}^*$:

$$f(x) = \frac{x^2}{\sinh(x)}.$$

- 1. Calculer un développement limité de f à l'ordre 3 au voisinage de 0.
- 2. En déduire que f est dérivable sur $\mathbb R$ et préciser la position relative au voisinage de 0 du graphe de f par rapport à sa tangente en 0.
- 3. La fonction f est-elle de classe \mathscr{C}^1 sur \mathbb{R} ?
- 4. Faire l'étude complète de f sur \mathbb{R} .

Exercice 18 Soit $f:]-1,0[\cup]0,+\infty[\to \mathbb{R}$ définie par

$$f(x) = \frac{\ln(1+x) - x}{x^2}.$$

Montrer que f peut être prolongée par continuité en 0 et que ce prolongement est alors dérivable en 0. Quelle est alors la position relative de la courbe f par rapport à sa tangente en ce point?

Exercice 19 Soient a un réel non nul et f la fonction définie au voisinage de 0 par

$$f(x) = \frac{\ln(1+ax)}{1+x}.$$

Déterminer les éventuelles valeurs de a pour lesquelles f présente un point d'inflexion en 0.

Exercice 20 Soient f, q, h les fonctions définies sur $]0, +\infty[$ par

$$f(x) = x^x$$
, $g(x) = x^{f(x)}$ et $h(x) = x^{g(x)}$

Déterminer les limites en 0 de ces trois fonctions.

Exercice 21 Etudier le comportement des fonctions suivantes (existence d'asymptote ou de tangente et position relative) à l'endroit indiqué :

1.
$$x \mapsto \ln(1 + x + x^2)$$
 en 0.

1.
$$x \mapsto \ln(1+x+x^2)$$
 en 0. 2. $x \mapsto \frac{x}{e^x-1}$ au voisinage de 0.

3.
$$x \mapsto 2\sqrt{x} - \sqrt{x+1} - \sqrt{x-1}$$
 en $+\infty$. 4. $x \mapsto \frac{x}{1+e^{\frac{1}{x}}}$ en $+\infty$.

4.
$$x \mapsto \frac{x}{1+e^{\frac{1}{x}}}$$
 en $+\infty$

5.
$$x \mapsto \frac{\arctan(x)}{\sin^3(x)} - \frac{1}{x^2}$$
 en 0. 6. $x \mapsto \frac{x \ln(x)}{x^2 - 1}$ sur \mathbb{R} .

6.
$$x \mapsto \frac{x \ln(x)}{x^2 - 1} \text{ sur } \mathbb{R}$$

7.
$$x \mapsto \int_x^{x^2} \frac{1}{\sqrt{1+t^4}} dt$$
 en $+\infty$ (donner un dev. asymptotique avec trois termes).

8.
$$x \mapsto x^{1-\frac{1}{x^2}} \operatorname{sur} \mathbb{R}$$
.

9.
$$x \mapsto \sqrt[3]{(x^2-2)(x+3)}$$
 en $+\infty$.

10.
$$x \mapsto x(\ln(2x+1) - \ln(x))$$
 en $+\infty$. 11. $x \mapsto \frac{x^3+2}{x^2-1}$ en $+\infty$.

11.
$$x \mapsto \frac{x^3+2}{x^2-1}$$
 en $+\infty$

12.
$$x \mapsto (x+1) \exp\left(\frac{1}{x-1}\right)$$
 en $+\infty$

12.
$$x \mapsto (x+1) \exp\left(\frac{1}{x-1}\right)$$
 en $+\infty$. 13. $x \mapsto x^3 \arctan\left(\frac{1}{x^2+1}\right)$ en $+\infty$.