

TD 8 Fonctions usuelles

Les fonctions logarithme et exponentielle

Exercice 1 Dans chaque cas, déterminer l'ensemble des réels vérifiant le système d'équations.

1.
$$\begin{cases} x + y = 25 \\ \ln(x) + \ln(y) = \ln(100) \end{cases}$$
 2.
$$\begin{cases} x^2 + y^2 = 169 \\ \ln(x) + \ln(y) = \ln(60) \end{cases}$$

2.
$$\begin{cases} x^2 + y^2 = 169\\ \ln(x) + \ln(y) = \ln(60) \end{cases}$$

Exercice 2

- 1. Montrer que pour tout $x \in]-1; +\infty[$, $\ln(1+x) \leq x$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$, $\left(1 + \frac{1}{n}\right)^n \leqslant e \leqslant \frac{1}{\left(1 \frac{1}{n}\right)^n}$.

Les fonctions logarithmes et exponentielles en base a

Exercice 3 Déterminer l'ensemble des réels $(x,y) \in (\mathbb{R}^*_+ \setminus \{1\})^2$ tels que

1.
$$\begin{cases} 4\left(\log_x(y) + \log_y(x)\right) = 17\\ xy = 243 \end{cases}$$

1.
$$\begin{cases} 4(\log_x(y) + \log_y(x)) = 17 \\ xy = 243 \end{cases}$$
 2.
$$\begin{cases} 7(\log_x(y) + \log_y(x)) = 50 \\ xy = 256 \end{cases}$$

Exercice 4 Soit $a \in \mathbb{R}_+^* \setminus \{1\}$.

- 1. Pour tout $x \in \mathbb{R}_+^*$, exprimer $\log_a(x) \log_{a^2}(x)$ en fonction de $\log_a(x)$.
- 2. Résoudre l'équation $\log_3(x)\log_9(x) = 2$.

Les fonctions puissances

Exercice 5 Pour tout $x \in \mathbb{R}_+^*$, on pose $u(x) = e^{x^2}$ et $v(x) = \frac{1}{x} \ln \left(x^{\frac{1}{x}} \right)$. Simplifier $u(x)^{v(x)}$.

Exercice 6 Déterminer les limites suivantes.

1.
$$\lim_{x \to +\infty} x^x$$

2.
$$\lim_{x\to 0} x^x$$

2.
$$\lim_{x \to 0} x^x$$
 3. $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$

$$4. \lim_{x \to +\infty} x^{\frac{1}{x}}$$

5.
$$\lim_{x \to 0} x^{\frac{1}{x}}$$

6.
$$\lim_{x \to 0} x^{\sqrt{x}}$$

6.
$$\lim_{x \to 0} x^{\sqrt{x}}$$
 7. $\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}$ 8. $\lim_{x \to 0} \frac{(x^x)^x}{x^{(x^x)}}$

8.
$$\lim_{x \to 0} \frac{(x^x)^x}{x^{(x^x)}}$$

Exercice 7 Déterminer les limites suivantes.

1.
$$\lim_{x \to +\infty} \frac{x+2}{x \ln(x) + e^x}$$
 2. $\lim_{x \to +\infty} \frac{e^{2x} + 2}{e^x - 3}$ 3. $\lim_{x \to +\infty} \frac{e^x + 2}{x^{10} + 5}$

$$2. \lim_{x \to +\infty} \frac{e^{2x} + 2}{e^x - 3}$$

3.
$$\lim_{x \to +\infty} \frac{e^x + 2x}{x^{10} + 2x}$$

4.
$$\lim_{x \to +\infty} x^2 - 2x \cos(x)$$
 5.
$$\lim_{x \to +\infty} \frac{x \sin(x)}{1 - x^2}$$

5.
$$\lim_{x \to +\infty} \frac{x \sin(x)}{1 - x^2}$$

$$6. \lim_{x \to +\infty} \frac{x-1}{2x - \ln^2(x)}$$

7.
$$\lim_{x \to +\infty} \sin\left(\frac{x+1}{x}\right)$$

8.
$$\lim_{x \to +\infty} x^2 e^{-x} + x$$

9.
$$\lim_{x \to +\infty} \frac{\ln(1+e^x)}{x}$$

Exercice 8 Résoudre les équations suivantes :

1.
$$5^{3x} = 7$$

$$2. \ 2^{x^3} = 3^{x^2}$$

3.
$$2^x + \frac{6}{2^x} = 5$$

4.
$$x^{\sqrt{x}} = (\sqrt{x})$$

4.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$
 5. $e^x + e^{1-x} = e + 1$

6.
$$2^{2x-1} + 3^x + 4^{x+\frac{1}{2}} - 9^{\frac{x}{2}+1} = 0$$

Exercice 9 Montrer que $\forall x \in [0, 1[$,

$$x^{x}(1-x)^{1-x} \geqslant \frac{1}{2}.$$

Les fonctions hyperboliques

Exercice 10 Simplifier $A(x) = \frac{\operatorname{ch}(\ln(x)) + \operatorname{sh}(\ln(x))}{x}$

Exercice 11 Dans chacun des cas, déterminer l'ensemble des réels x solutions de l'équation.

1.
$$ch(x) = 2$$

2.
$$5 \operatorname{ch}(x) - 4 \operatorname{sh}(x) = 3$$

Exercice 12

- 1. Etablir que pour tout $x \in \mathbb{R}_+$, on a sh $(x) \ge x$.
- 2. Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{ch}(x) \geqslant 1 + \frac{x^2}{2}$.

Exercice 13 Soient $(a, b) \in \mathbb{R}^2$. Pour tout $n \in \mathbb{N}$, on pose

$$C_n = \sum_{k=0}^{n} \operatorname{ch}(a+kb)$$
 et $S_n = \sum_{k=0}^{n} \operatorname{sh}(a+kb)$.

- 1. Pour tout $n \in \mathbb{N}$, calculer $C_n + S_n$ et $C_n S_n$.
- 2. En déduire pour tout $n \in \mathbb{N}$ les valeurs de C_n et de S_n .

Exercice 14 Soit $a \in \mathbb{R}$, résoudre l'équation $\operatorname{sh}(a) + \operatorname{sh}(a+x) + \operatorname{sh}(a+2x) + \operatorname{sh}(a+3x) =$ 0 d'inconnue $x \in \mathbb{R}$.

Exercice 15 On pose th $(x) = \frac{\sinh(x)}{\cosh(x)}$. Simplifier l'expression $y = \ln\left(\sqrt{\frac{1+\tanh(x)}{1-\tanh(x)}}\right)$.

Exercice 16 Pour tout $x \in \mathbb{R}$, on pose th $(x) = \frac{\sinh(x)}{\cosh(x)}$.

- 1. Montrer que, $\forall x \in \mathbb{R}^*$, th $(x) = \frac{2}{\operatorname{th}(2x)} \frac{1}{\operatorname{th}(x)}$.
- 2. En déduire pour tout $n \in \mathbb{N}^*$ un calcul de la somme

$$S_n = \sum_{k=0}^{n-1} 2^k \text{th}(2^k x)$$

Les fonctions circulaires réciproques

Exercice 17 Calculer les nombres suivants.

- 1. $\arcsin\left(\frac{\sqrt{2}}{2}\right)$
- 2. $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$
- 3. $\arcsin\left(\frac{1}{2}\right)$

- 4. $\arcsin\left(\frac{-1}{2}\right)$
- 5. $\arctan(\sqrt{3})$
- 6. $\arctan(-1)$

- 7. $\sin\left(\arcsin\left(\frac{1}{3}\right)\right)$
- 8. $\arcsin\left(\sin\left(\frac{4\pi}{3}\right)\right)$
- 9. $\arccos\left(\cos\left(\frac{7\pi}{4}\right)\right)$

- 10. $\arcsin\left(\sin\left(\frac{19\pi}{5}\right)\right)$
- 11. $\arcsin\left(\sin\left(\frac{-47\pi}{8}\right)\right)$
- 12. $\arctan\left(\tan\left(\frac{\pi}{5}\right)\right)$

Exercice 18 Donner le domaine de définition des expressions suivantes puis les simplifier.

- 1. $\cos(2\arccos(x))$
- 2. $\cos(2\arcsin(x))$
- 3. $\sin(\arccos(x))$

- 4. $\sin(2\arctan(x))$
- 5. $tan(2 \arcsin(x))$

Exercice 19 Soit $p \in \mathbb{N}$.

- 1. Justifier que $\arctan(p+1) \arctan(p) \in \left[0, \frac{\pi}{2}\right[$.
- 2. Exprimer $\arctan(p+1) \arctan(p)$ sous la forme $\arctan(u)$, avec $u \in \mathbb{R}$ à déterminer.
- 3. En déduire la limite de la suite $(S_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par

$$S_n = \sum_{p=0}^n \arctan\left(\frac{1}{p^2 + p + 1}\right).$$

Exercice 20 Soient p > 0 et q > 0 deux entiers. On note \mathcal{D} l'ensemble de définition de la fonction tangente.

1. Montrer que $\arctan\left(\frac{p}{q}\right) + \arctan\left(\frac{q-p}{q+p}\right) \in \mathscr{D}$

- 2. Calculer $\arctan\left(\frac{p}{q}\right) + \arctan\left(\frac{q-p}{q+p}\right)$.
- 3. Ecrire $4\arctan\left(\frac{1}{5}\right)$ sous forme $\arctan(u)$, où u est un réel à déterminer.
- 4. Déduire des questions précédentes la formule $4\arctan\left(\frac{1}{5}\right) \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$.

Exercice 21 Dans chacun des cas, déterminer l'ensemble des réels x solutions.

- 1. $\arcsin(x) = \arcsin\left(\frac{4}{5}\right) + \arcsin\left(\frac{5}{13}\right)$
- 2. $\arcsin(\tan(x)) = x$

- 3. arccos(x) = arcsin(2x)
- 4. $\arctan(x) + \arctan(x\sqrt{3}) = \frac{7\pi}{12}$
- 5. $\arcsin\left(\frac{2x}{1+x^2}\right) = \arctan(x)$ 6. $\arcsin\left(\frac{\tan(x)}{2}\right) = \arctan(x)$

Exercice 22 Résoudre les équations suivantes :

- 1. $\arcsin(x) + \arcsin\left(\frac{x}{2}\right) = \frac{\pi}{3}$.
- 2. $\arcsin(x) + \arcsin(\sqrt{1-x^2}) = \frac{\pi}{2}$

3. $\arctan x + \arctan 2x = \frac{\pi}{4}$

- 4. $\arcsin 2x = \arcsin x + \arcsin(x\sqrt{2})$
- 5. $2\arcsin x = \arcsin(2x\sqrt{1-x^2})$
- 6. $\arcsin(2x) \arcsin(x\sqrt{3}) = \arcsin(x)$.

Exercice 23 Résoudre l'équation $2^{\sin^2(x)} = \cos(x)$.

Exercice 24 Etudier la fonction suivante :

$$f(x) = \arctan\left(\frac{2x}{1-x^2}\right) - 2\arctan x.$$

Exercice 25 Etudier puis simplifier les expressions suivantes :

1. $f(x) = \arccos(1 - 2x^2)$.

2. $f(x) = \arcsin(3x - 4x^3)$

3. $f(x) = \arccos \frac{1-x^2}{1+x^2}$

4. $f(x) = \arcsin \frac{2x}{1+x^2}$

5. $f(x) = \arctan \sqrt{\frac{1-x}{1+x}}$

- 6. $f(x) = \arctan \frac{\sqrt{1+x^2}-1}{x}$
- 7. $f(x) = \arctan(\sqrt{1+x^2} x)$

Exercice 26 Etudier les fonctions suivantes :

- 1. $f: x \mapsto \arctan \frac{x}{x+1} + \arctan \frac{x}{x-1} + \arctan 2x^2$.
- 2. $f: x \mapsto \arcsin \sqrt{\frac{1+\sin(2x)}{2}}$.
- 3. $f: x \mapsto \arcsin(\cos(x)) + \arccos(\sin(x))$.
- 4. $f: x \mapsto \arccos(\cos(x)) + \frac{1}{2}\arccos(\cos(2x))$.
- 5. $f: x \mapsto \arccos(\cos(x)) + \frac{1}{2}\arccos(\cos(2x)) + \frac{1}{6}\arccos(\cos(3x))$.