

Devoir Maison 3 Calcul algébrique, fonctions usuelles, équations complexes

A faire pour le jeudi 23 novembre

Problème I - Calcul algébrique

Pour tout $n \in \mathbb{N}$, $(a_k)_{k \in \llbracket 0;n \rrbracket}$ et $(b_k)_{k \in \llbracket 0;n \rrbracket}$, on pose

$$S_n = \sum_{k=0}^n a_k b_{n-k}.$$

Partie 1: Des exemples

- 1. Soit $a \in \mathbb{R}$. On suppose que pour tout $n \in \mathbb{N}$, $a_n = a^n$ et $b_n = 3$. Calculer alors pour tout $n \in \mathbb{N}$, S_n .
- 2. Soit $(a,b) \in \mathbb{R}$, $a \neq b$. On suppose que pour tout $n \in \mathbb{N}$, $a_n = a^n$ et $b_n = b^n$. Calculer alors pour tout $n \in \mathbb{N}$, S_n .
- 3. Soit $n \in \mathbb{N}$. On pose pour tout $k \in [0; n]$, $a_k = \binom{n}{k}$ et $b_k = 2^k$. Calculer dans ce cas S_n .
- 4. On suppose que pour tout $n \in \mathbb{N}$, $a_n = n + 1$ et $b_n = n^2$. Calculer alors pour tout $n \in \mathbb{N}$, S_n .
- 5. Soient $x \in \mathbb{R}^*$. On suppose que pour tout $n \in \mathbb{N}$, $a_n = b_n = \operatorname{ch}(nx)$.
 - (a) Soit $(n, k) \in \mathbb{N}^2$. Développer $\operatorname{ch}(kx) \operatorname{ch}((n-k)x)$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$,

$$S_n = \frac{(n+1)\operatorname{ch}(nx)}{2} + \frac{\operatorname{sh}((n+1)x)}{2\operatorname{sh}(x)}.$$

6. Soit $n \in \mathbb{N}$. On pose pour tout $k \in [0; n]$, $a_k = \sum_{i=k}^n \frac{1}{i+1}$ et $b_k = 1$. Calculer dans ce cas S_n .

Partie 2 : Etude d'un exemple plus poussé

On suppose dans cette partie que pour tout $n \in \mathbb{N}$,

$$a_n = b_n = \frac{1}{n+1} \binom{2n}{n}.$$

On obtient alors l'expression suivante de S_n et on pose également T_n par, pour tout $n \in \mathbb{N}$,

$$S_n = \sum_{k=0}^n a_k a_{n-k}$$
 et $T_n = \sum_{k=0}^n k a_k a_{n-k}$.

- 7. Calculer successivement $a_0, a_1, a_2, a_3, a_4, S_0, S_1, S_2, S_3$. Quelle conjecture peut-on émettre?
- 8. Montrer que pour tout $n \in \mathbb{N}$, $(n+2) a_{n+1} = 2(2n+1) a_n$.
- 9. A l'aide d'un changement d'indice, montrer que

$$\forall n \in \mathbb{N}, \qquad T_{n+1} + S_{n+1} = a_{n+1} + \sum_{k=0}^{n} (k+2) a_{k+1} a_{n-k}.$$

- 10. En déduire que pour tout $n \in \mathbb{N}$, $T_{n+1} + S_{n+1} = a_{n+1} + 4T_n + 2S_n$.
- 11. (a) Montrer que pour tout $n \in \mathbb{N}$, $T_n = \sum_{k=0}^{n} (n-k) a_k a_{n-k}$.
 - (b) En déduire une expression de T_n en fonction de S_n .
- 12. Déduire des questions précédentes une relation de récurrence entre S_{n+1} , a_{n+1} et S_n pour tout $n \in \mathbb{N}$.
- 13. Démontrer que pour tout $n \in \mathbb{N}$, $S_n = a_{n+1}$.
- 14. Montrer que pour tout $n \in \mathbb{N}$, $a_n \in \mathbb{N}$.

Problème II - Fonction usuelle

On considère f définie lorsque c'est possible par $f(x) = \arccos\left(\sqrt{\frac{1+\sin(x)}{2}}\right)$.

- 1. Déterminer \mathcal{D} l'ensemble de définition de f puis \mathcal{D}' le domaine de dérivabilité de f.
- 2. Vérifier que f est périodique.
- 3. (a) Calculer f(0), $f\left(\frac{\pi}{6}\right)$ et $f\left(-\frac{\pi}{6}\right)$.
 - (b) En déduire que f n'est ni paire ni impaire.

Simplification de f - Méthode 1

- 4. (a) Pour tout $x \in \mathcal{D}'$, déterminer f'(x).
 - (b) En déduire une expression simplifiée de f sur $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$.
 - (c) En déduire également une expression simplifiée de f sur $\frac{\pi}{2}$; $\frac{3\pi}{2}$.
 - (d) Vérifier que f est continue en $\frac{\pi}{2}$.
- 5. Tracer le graphe de f sur $\left[-\frac{3\pi}{2}; \frac{5\pi}{2}\right]$.

Simplification de f - Méthode 2

Soit $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$. On pose $t = \tan\left(\frac{x}{2}\right)$.

- 6. Exprimer f(x) en fonction de t.
- 7. En déduire que

$$f(x) = \arccos\left(\frac{\sin(x/2) + \cos(x/2)}{\sqrt{2}}\right).$$

8. Sans dériver, retrouver le résultat de 4.b.

Problème III - Equations complexes

Pour tout $z \in \mathbb{C}$, on définit

$$P(z) = z^3 - (6+i)z^2 + (-14+10i)z - 16(1+i).$$

- 1. Déterminer l'ensemble des imaginaires purs $z \in i\mathbb{R}$ tels que P(z) = 0.
- 2. Montrer qu'il existe $(a, b, c) \in \mathbb{C}^3$ tel que

$$\forall z \in \mathbb{C}, \qquad P(z) = (z+i) \left(az^2 + bz + c\right).$$

- 3. En déduire l'ensemble des solutions complexes $z \in \mathbb{C}$ tels que P(z) = 0.
- 4. En déduire l'ensemble des complexes $z \in \mathbb{C}$ tels que

$$z^{21} - (6+i)z^{14} + (-14+10i)z^7 - 16(1+i) = 0.$$