

Correction de l'interrogation 26 Intégration

1. (a) Enoncer le théorème de Weierstrass.

Solution. Soient $(a, b) \in \mathbb{R}^2$, a < b et $f \in \mathscr{C}([a; b])$. Alors,

$$\forall \varepsilon > 0, \ \exists \varphi \in \mathscr{E}([a;b]), \ \forall x \in [a;b], \qquad |f(x) - \varphi(x)| \leqslant \varepsilon.$$

(b) Enoncer l'inégalité de Taylor-Lagrange.

Solution. Soient $n \in \mathbb{N}$, $(a,b) \in \mathbb{R}^2$ et $f \in \mathscr{C}^{n+1}([a;b])$. Alors,

$$\left| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right| \le \sup_{z \in [a;b]} \left| f^{(n+1)}(z) \right| \frac{|b-a|^{n+1}}{(n+1)!}.$$

- (c) Définir la convergence absolue. Quelle est l'implication associée? Contre-exemple de la réciproque? Solution. Soit $\sum_{n\in\mathbb{N}} u_n$ une série numérique.
 - On dit que $\sum_{n\in\mathbb{N}}u_n$ converge absolument si et seulement si $\sum_{n\in\mathbb{N}}|u_n|$ converge.
 - La converge absolue implique la convergence.
 - La série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n}$ converge mais ne converge pas absolument car $\sum_{n \in \mathbb{N}^*} \left| \frac{(-1)^n}{n} \right| = \sum_{n \in \mathbb{N}^*} \frac{1}{n}$ est la série harmonique qui diverge.
- 2. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx$. Montrer que $(I_n)_{n \in \mathbb{N}}$ converge et déterminer sa limite.

Solution. Soit $n \in \mathbb{N}$. On peut commencer à observer que $x \mapsto \frac{x^n}{\sqrt{1+x^2}}$ est continue sur [0;1]. Donc I_n existe. De plus, pour tout $x \in [0;1]$, on a

$$\begin{split} 1 \leqslant 1 + x^2 \leqslant 2 & \Leftrightarrow & 0 < 1 \leqslant \sqrt{1 + x^2} \leqslant \sqrt{2} \\ \Leftrightarrow & 1 \geqslant \frac{1}{\sqrt{1 + x^2}} \geqslant \frac{\sqrt{2}}{2} \\ \Leftrightarrow & x^n \geqslant \frac{x^n}{\sqrt{1 + x^2}} \geqslant \frac{\sqrt{2}}{2} x^n & \text{CAR } x^n \geqslant 0. \end{split}$$

Donc par croissance de l'intégrale car les bornes sont dans le bon sens,

$$\int_0^1 x^n \, \mathrm{d}x \geqslant I_n \geqslant \int_0^1 \frac{\sqrt{2}}{2} x^n \, \mathrm{d}x = \frac{\sqrt{2}}{2} \int_0^1 x^n \, \mathrm{d}x$$

Or

$$\int_0^1 x^n \, \mathrm{d}x = \left[\frac{x^{n+1}}{n+1} \right]_{x=0}^{x=1} = \frac{1}{n+1}.$$

Ainsi,

$$\forall n \in \mathbb{N}, \qquad \frac{1}{n+1} \frac{\sqrt{2}}{2} \leqslant I_n \leqslant \frac{1}{n+1}.$$

Donc par le théorème d'encadrement, $(I_n)_{n\in\mathbb{N}}$ converge et

$$\lim_{n \to +\infty} I_n = 0.$$

On pouvait aussi montrer que $(I_n)_{n\in\mathbb{N}}$ est monotone mais cela ne nous donnait pas la limite.

3. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \left(\sum_{k=1}^n \frac{\ln{(n+k)}}{n}\right) - \ln{(n)}$. Montrer que $(S_n)_{n \in \mathbb{N}^*}$ converge et déterminer sa limite.

Solution. Soit $n \in \mathbb{N}^*$, on a

$$S_n = \sum_{k=1}^n \frac{\ln(n+k)}{n} - \ln(n) = \frac{1}{n} \sum_{k=1}^n \left[\ln(n) + \ln\left(1 + \frac{k}{n}\right) \right] - \ln(n)$$
$$= \frac{n \ln(n)}{n} + \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right) - \ln(n)$$
$$= \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right).$$

Posons a=1, b=2 et $f:t\mapsto \ln(t)$. La fonction f est continue sur [1;2] et pour tout $n\in\mathbb{N}^*$, on a

$$S_n = \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right).$$

On reconnaît donc une somme de Riemann et puisque f est continue sur [1;2], on en déduit que $(S_n)_{n\in\mathbb{N}^*}$ converge et

$$\lim_{n \to +\infty} S_n = \int_a^b f(t) \, \mathrm{d}t = \int_1^2 \ln(t) \, \mathrm{d}t = [t \ln(t) - t]_{t=1}^{t=2} = 2 \ln(2) - 2 - (-1) = 2 \ln(2) - 1.$$

Conclusion,

$$\lim_{n \to +\infty} S_n = 2\ln(2) - 1.$$

On pouvait aussi poser $a=0,\ b=1$ et $f:t\mapsto \ln{(1+t)}$. On obtient $S_n \underset{n\to+\infty}{\longrightarrow} \int_0^1 \ln{(1+t)}\,\mathrm{d}t$ que l'on calcule par le changement de variable s=1+t et on se ramène alors bien à la même intégrale que ci-dessus.

4. Déterminer le domaine de dérivabilité de $\varphi: x \mapsto \int_{x^3}^{x^2} \ln{(8+t)} \cos{(2t)} dt$ et donner une expression de sa dérivée. Solution. Soit $f: t \mapsto \ln{(8+t)} \cos{(2t)}$. La fonction f est définie et même continue sur $]-8; +\infty[$. Soit $x \in]-2; +\infty[$. Alors, $x^3 \in]-8; +\infty[$ et $x^2 \in [0; +\infty[$ et même $[x^3; x^2] \subseteq]-8; +\infty[$ ou $[x^2; x^3] \subseteq]-8; +\infty[$. Donc f est continue sur $[x^3; x^2]$ ou $[x^2; x^3]$. Donc $\varphi(x)$ existe. Ceci étant vrai pour tout $x \in]-2; +\infty[$. On en déduit que φ est bien définie sur $]-2; +\infty[$. A l'inverse, si $x \in -2$, alors $x^3 \in -8$ et donc $[x^3; x^2]$ n'est pas inclus dans $]-8; +\infty[$ et $\varphi(x)$ n'existe pas. Posons pour tout $x \in]-2; +\infty[$,

$$F(x) = \int_{0}^{x} \ln(8+t)\cos(2t) dt.$$

Par le théorème fondamental de l'analyse, F est définie et même \mathscr{C}^1 sur $]-8;+\infty[$ et pour tout $x\in]-8;+\infty[$, F'(x)=f(x). Or, pour tout $x\in]-2;+\infty[$,

$$\varphi(x) = \int_{x^3}^{x^2} \ln(1+t)\cos(2t) dt = \int_0^{x^2} \ln(1+t)\cos(2t) dt - \int_0^{x^3} \ln(1+t)\cos(2t) dt = F(x^2) - F(x^3).$$

La fonction F est \mathscr{C}^1 sur $]-8; +\infty[$, $u: x\mapsto x^2$ est \mathscr{C}^1 sur $]-2; +\infty[$ et $u(]-2; +\infty[)=[0; +\infty[\subseteq]-8; +\infty[$. De même, $v: x\mapsto |x|$ est \mathscr{C}^1 sur $]-2; +\infty[$ et $v(]-2; +\infty[)=]-8; +\infty[$. Donc par composition et différence, φ est \mathscr{C}^1 sur $]-2; +\infty[$ et pour tout $x\in]-2; +\infty[$,

$$\varphi'(x) = 2xF'(x^2) - 3x^2F'(x^3) = 2x\ln(8+x^2)\cos(2x^2) - 3x^2\ln(8+x^3)\cos(2x^3).$$

Conclusion,

$$\forall x \in]-2; +\infty[, \qquad \varphi'(x) = 2x \ln(8+x^2) \cos(2x^2) - 3x^2 \ln(8+x^3) \cos(2x^3).$$

5. Appliquer l'inégalité de Taylor-Lagrange à l'ordre 2n+1 pour la fonction $f:t\mapsto \operatorname{sh}(2t)$ aux points a=0 et $b=x\in\mathbb{R}_+$ puis montrer que son reste est majoré en valeur absolue par $\operatorname{sh}(2x)\frac{(2x)^{2n+2}}{(2n+2)!}$.

Solution. Soit $x \in \mathbb{R}_+$. La fonction f est définie et même \mathscr{C}^{2n+2} sur \mathbb{R} donc sur [0;x]. Par l'inégalité de Taylor-Lagrange,

$$\left| \operatorname{sh}(2x) - \sum_{k=0}^{2n+1} \frac{f^{(k)}(x)}{k!} x^k \right| \leqslant \sup_{z \in [0;x]} \left| f^{(2n+2)}(z) \right| \frac{|x|^{2n+2}}{(2n+1)!}$$

Or pour tout $t \in \mathbb{R}$ et tout $k \in [0; n]$,

$$f^{(2k)}(t) = 2^{2k} \operatorname{sh}^{(2k)}(2t) = 2^{2k} \operatorname{sh}(2t) \qquad \text{et} \qquad f^{(2k+1)}(t) = 2^{2k+1} \operatorname{sh}^{(2k+1)}(2t) = 2^{2k+1} \operatorname{ch}(2t).$$

Notamment,

$$f^{(2k)}(0) = 0$$
 et $f^{(2k+1)}(0) = 2^{2k+1}$.

De plus, par croissance de la fonction sh sur \mathbb{R}_+ , pour tout $z \in [0; x]$,

$$0 = 2^{2n+2} \operatorname{sh}(0) \leqslant f^{(2n+2)}(z) = 2^{2k} \operatorname{sh}(2z) \leqslant 2^{2n+2} \operatorname{sh}(2x).$$

Donc $\sup_{z\in[0;x]}\left|f^{(2n+2)(z)}\right|\leqslant 2^{2n+2}\operatorname{sh}\left(2x\right).$ Ainsi,

$$\left| \operatorname{sh}(2x) - \sum_{k=0}^{n} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} - \sum_{k=0}^{n} \frac{f^{(2k+1)}(0)}{(2k+1)!} x^{2k+1} \right| \leqslant 2^{2k} \operatorname{sh}(2x) \frac{x^{2n+2}}{(2n+2)!}$$

Donc

$$\left| \operatorname{sh}(2x) - \sum_{k=0}^{n} \frac{(2x)^{2k+1}}{(2k+1)!} \right| \leqslant \operatorname{sh}(2x) \frac{(2x)^{2n+2}}{(2n+2)!}$$

Conclusion,

$$\left| | \operatorname{sh}(2x) - \sum_{k=0}^{n} \frac{(2x)^{2k+1}}{(2k+1)!} \right| \le \operatorname{sh}(2x) \frac{(2x)^{2n+2}}{(2n+2)!}$$

On pouvait aussi retrouver ce résultat en appliquant l'inégalité à sh entre 0 et u puis en prenant u = 2x.