

Correction de l'interrogation 28 Représentation matricielle

1. (a) Préciser l'isomorphisme entre les applications linéaires et les matrices. Quelle est la dimension de $\mathscr{L}(E,F)$?

Solution. Soient $(p,n) \in (\mathbb{N}^*)^2$, E et F deux espaces vectoriels de dimension p et n respectivement, \mathscr{B}_E une base de E et \mathscr{B}_F une base de F. Alors, l'application

$$\Phi: \mathcal{L}(E, F) \to \mathcal{M}_{n,p}\left(\mathbb{K}\right)$$
$$f \mapsto \operatorname{mat}_{\mathcal{B}_{E}, \mathcal{B}_{F}}\left(f\right),$$

forme un isomorphisme. En particulier dim $(\mathcal{L}(E,F)) = np$.

(b) Enoncer la proposition donnant le vecteur image. Solution. Soient E et F deux espaces vectoriels de dimension finie, \mathscr{B}_E une base de E, \mathscr{B}_F une base de F, $x \in E$ et $f \in \mathscr{L}(E, F)$. Notons $X = \mathrm{mat}_{\mathscr{B}_E}(x)$, $A = \mathrm{mat}_{\mathscr{B}_E, \mathscr{B}_F}(f)$ et $Y = \mathrm{mat}_{\mathscr{B}_F}(f(x))$. Alors

$$Y = AX$$
.

(c) Donner la notation pour l'ensemble des parties d'un ensemble. Lorsque E est fini en donner son cardinal. Solution. Soit E un ensemble fini de cardinal n. L'ensemble des parties de E est noté $\mathscr{P}(E)$ et son cardinal est

$$\operatorname{Card}\left(\mathscr{P}\left(E\right)\right)=2^{n}.$$

2. Soient $f: \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P & \mapsto & P(1)X^2 + P'(1)X + P''(1) \end{array}$ et $\mathscr{B} = (e_1, e_2, e_3) = (1, X, X^2 + 3X)$. On admet que $f \in \mathscr{L}(\mathbb{R}_2[X])$ et que \mathscr{B} est une base de $\mathbb{R}_2[X]$. Calculer $f(e_1), f(e_2), f(e_3)$ et en déduire $\mathrm{mat}_{\mathscr{B}}(f)$. Solution. Calculons les images de \mathscr{B} par f. On a

$$f(e_1) = f(1) = X^2$$
, $f(e_2) = f(X) = X^2 + X$, $f(e_3) = f(X^2 + X) = 4X^2 + 5X + 2$.

On observe alors que

$$f(e_1) = X^2 + 3X - 3X = e_3 - e_2.$$

Donc

$$\operatorname{mat}_{\mathscr{B}}(f(1)) = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}.$$

De même, $f(e_2) = X^2 + 3X - 2X = e_3 - 2e_2$ donc $\max_{\mathscr{B}}(f(X)) = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$. Enfin, $f(X^2 + 3X) = 4X^2 + 5X + 2 = 4(X^2 + 3X) - 7X + 2 = 4e_3 - 7e_2 + 2e_1$. D'où $\max_{\mathscr{B}}(f(X^2)) = \begin{bmatrix} 2 \\ -7 \\ 4 \end{bmatrix}$. Conclusion,

$$mat_{\mathscr{B}}(f) = \begin{pmatrix} 0 & 0 & 2 \\ -3 & -2 & -7 \\ 1 & 1 & 4 \end{pmatrix}.$$

3. Soient \mathscr{C} la base canonique de $\mathbb{R}_2[X]$ et $\mathscr{B} = (X^2 + 1, X - 1, X(X - 1))$. Montrer que \mathscr{B} est une base de $\mathbb{R}_2[X]$ et déterminer la matrice de passage de \mathscr{B} à \mathscr{C} .

Solution. Soit $P = \text{mat}_{\mathscr{C}}(\mathscr{B})$. On a

$$P = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}.$$

On a les opérations élémentaires suivantes :

$$P \underset{\mathscr{L}}{\sim} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \qquad L_{3} \leftarrow L_{3} - L_{1} \qquad I_{2} \underset{\mathscr{L}}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$\overset{C}{\sim} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \qquad L_{3} \leftarrow L_{3} - L_{2} \qquad I_{2} \underset{\mathscr{L}}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

$$\overset{C}{\sim} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \qquad L_{3} \leftarrow \frac{1}{2}L_{3} \qquad I_{2} \underset{\mathscr{L}}{\sim} \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

$$\overset{C}{\sim} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad L_{2} \leftarrow L_{2} + L_{3} \qquad I_{2} \underset{\mathscr{L}}{\sim} \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}$$

$$\overset{C}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad L_{1} \leftarrow L_{1} + L_{2} \qquad I_{2} \underset{\mathscr{L}}{\sim} \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} .$$

Avez-vous vérifié votre résultat?

 $P \sim I_3$ donc $P = \operatorname{mat}_{\mathscr{C}}(\mathscr{B})$ est inversible. Donc $\boxed{\mathscr{B}}$ est une base de $\mathbb{R}_2[X]$. De plus,

$$P_{\mathcal{B},\mathcal{B}} = \operatorname{mat}_{\mathcal{B}}(\mathcal{C}) = P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

4. Soit f l'endomorphisme canoniquement associé à $\begin{pmatrix} 1 & 7 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$ dans \mathbb{R}^3 , \mathscr{C} la base canonique de \mathbb{R}^3 , et $\mathscr{B} =$

$$\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}. \text{ On admet que } \mathscr{B} \text{ est une base de } \mathbb{R}^3 \text{ et on donne } P_{\mathscr{B},\mathscr{C}} = \frac{1}{6} \begin{pmatrix} 0 & 6 & -6 \\ -1 & 3 & -1 \\ 1 & 3 & 1 \end{pmatrix}. \text{ Déterminer mat}_{\mathscr{B}}(f).$$

Deux méthodes : vous pouvez faire les deux, 2 points par méthode faite.

Solution. Méthode 1, par la formule de changement de base. Soit $P=\mathrm{mat}_{\mathscr{C}}(\mathscr{B})=P_{\mathscr{C},\mathscr{B}}.$ On a

$$P = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

De plus, d'après l'énoncé, on a

$$P^{-1} = P_{\mathcal{B},\mathcal{C}} = \frac{1}{6} \begin{pmatrix} 0 & 6 & -6 \\ -1 & 3 & -1 \\ 1 & 3 & 1 \end{pmatrix}.$$

Posons $A = \operatorname{mat}_{\mathscr{C}}(f) = \begin{pmatrix} 1 & 7 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$ et $D = \operatorname{mat}_{\mathscr{B}}(f)$. Par la formule de changement de base,

$$\begin{split} D &= P^{-1}AP \\ &= P^{-1}\begin{pmatrix} 1 & 7 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}\begin{pmatrix} 1 & -4 & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \\ &= \frac{1}{6}\begin{pmatrix} 0 & 6 & -6 \\ -1 & 3 & -1 \\ 1 & 3 & 1 \end{pmatrix}\begin{pmatrix} 0 & 4 & 10 \\ 0 & -1 & 5 \\ 0 & -1 & 5 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}. \end{split}$$

Conclusion,

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Méthode 2, par le calcul des images. Notons $\mathcal{B} = (e_1, e_2, e_3), A = \begin{pmatrix} 1 & 7 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$. Puisque l'on est dans la base canonique de \mathbb{R}^3 ,

$$f(e_1) = \max_{\mathscr{C}}(f(e_1)) = \max_{\mathscr{C}}(f)\max_{\mathscr{C}}(e_1) = Ae_1 = \begin{pmatrix} 1 & 7 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Donc $f(e_1) = 0_{3,1}$. De même,

$$f\left(e_{2}\right)=\operatorname{mat}_{\mathscr{C}}\left(f\left(e_{2}\right)\right)=\begin{pmatrix}1&7&1\\1&2&1\\1&2&1\end{pmatrix}\begin{bmatrix}-4\\1\\1\end{bmatrix}=\begin{bmatrix}4\\-1\\-1\end{bmatrix}=-e_{2}.$$

Enfin,

$$f(e_3) = \max_{\mathscr{C}} (f(e_3)) = \begin{pmatrix} 1 & 7 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix} = 5e_3.$$

Ainsi, $f(e_1) = 0$, $f(e_2) = -e_2$ et $f(e_3) = 5e_3$. Conclusion,

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

5. Déterminer le noyau, l'image et le rang de $A = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & 0 \\ -1 & -1 & -3 \end{pmatrix}$.

Solution. Méthode 1. On observe d'une part que $C_3 = 3C_1$. Donc le vecteur $\begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \in \text{Ker }(A)$. Nécessairement, $\dim (\text{Ker }(A)) \geqslant 1$ et par le théorème du rang, $\operatorname{rg}(A) \leqslant 2$. De plus, C_1 et C_2 ne sont pas colinéaires. Donc

 $\operatorname{rg}(A) \geqslant 2$. Ainsi, $\operatorname{rg}(A) = 2$. De plus, C_1 et C_2 sont deux vecteurs non colinéaires de l'image donc forment une base de l'image : $\operatorname{Im}(A) = \operatorname{Vect}\left(\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}-1\\2\\-1\end{bmatrix}\right)$. Enfin, $\begin{bmatrix}-3\\0\\1\end{bmatrix}$ est un vecteur non nul du noyau et par le

théorème du rang, dim (Ker (A)) = 3 - rg (A) = 2. Donc Ker (A) = Vect $\begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$. Conclusion,

$$\operatorname{rg}(A) = 2, \quad \operatorname{Im}(A) = \operatorname{Vect}\left(\begin{bmatrix}1\\0\\-1\end{bmatrix}, \begin{bmatrix}-1\\2\\-1\end{bmatrix}\right), \quad \operatorname{Ker}(A) = \operatorname{Vect}\left(\begin{bmatrix}-3\\0\\1\end{bmatrix}\right).$$

Méthode 2 pour le noyau. Soit $X=\begin{bmatrix}x\\y\\z\end{bmatrix}\in\mathbb{R}^3.$ On a les équivalences suivantes :

$$X \in \text{Ker}(A) \qquad \Leftrightarrow \qquad AX = 0_{3,1}$$

$$\begin{cases} x - y + 3z = 0 \\ 2y = 0 \\ -x - y - 3z = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} x + 3z = 0 \\ y = 0 \\ -x - 3z = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} x = -3z \\ y = 0 \end{cases}$$

$$\Leftrightarrow \qquad X = \begin{bmatrix} -3z \\ 0 \\ z \end{bmatrix}.$$

Conclusion,

$$\operatorname{Ker}(A) = \operatorname{Vect}\left(\begin{bmatrix} -3\\0\\1\end{bmatrix}\right).$$

Méthode 2 pour l'image. Les opérations élémentaires ne modifient pas l'espace engendré. Ainsi,

$$\operatorname{Im}(A) = \operatorname{Vect}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\0\\-3 \end{bmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}\right) \qquad C_2 \leftarrow C_2 + C_1$$

$$C_3 \leftarrow C_3 - 3C_1$$

$$= \operatorname{Vect}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}\right) \qquad C_2 \leftarrow \frac{1}{2}C_2$$

On note que les deux vecteurs de \mathcal{B}_I ne sont pas colinéaires et engendrent $\operatorname{Im}(A)$ et forment donc une base de $\operatorname{Im}(A)$. Conclusion,

$$\boxed{\operatorname{Im}(A) = \operatorname{Vect}\left(\begin{bmatrix}1\\0\\-1\end{bmatrix}, \begin{bmatrix}0\\1\\-1\end{bmatrix}\right).}$$

Naturellement la donnée du noyau OU de l'image suffit pour obtenir le rang de A. Méthode 2 pour le rang. Les opérations élémentaires ne modifient pas le rang,

$$rg(A) = rg\begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & 0 \\ 0 & -2 & 0 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$L_3 \leftarrow L_3 + L_1$$

$$L_3 \leftarrow L_3 + L_2.$$

La dernière matrice étant triangulaire avec deux pivots, on en déduit que

$$\operatorname{rg}\left(A\right) =2.$$