

Réponses de l'interrogation 34 Révisions III

1. (a) Définir j. Que vaut j^2 ? j^3 ? $1 + j + j^2$? Solution. On a $j = e^{i\frac{2\pi}{3}}$. De plus,

$$j^2 = \overline{j},$$
 $j^3 = 1$ et $1 + j + j^2 = 0.$

- (b) Que dire de l'image d'une famille par une application linéaire? Solution. Soient E et F deux espaces vectoriels, $\mathscr{F} = (u_1, \ldots, u_n)$ une famille de vecteurs de E et $f \in \mathscr{L}(E, F)$. Alors
 - Si f est injective et \mathscr{F} libre alors $f(\mathscr{F}) = (f(u_1), \dots, f(u_n))$ est libre.
 - Si f est surjective et \mathscr{F} est génératrice dans E alors $f(\mathscr{F})$ est génératrice dans F.
 - Si f est un isomorphisme et \mathscr{F} une base de E alors $f(\mathscr{F})$ est une base de F.
- 2. On pose pour tout $n \in \mathbb{N}^*$, $I_n = \int_{\frac{3}{2}}^n \frac{1}{\ln^2(t)} dt$. Montrer que $(I_n)_{n \in \mathbb{N}}$ tend vers $+\infty$.

On pourra comparer $\ln^2(t)$ avec t pour t assez grand. Solution. On observe que

$$\frac{\ln^2(t)}{t} \underset{t \to +\infty}{\longrightarrow} 0.$$

Donc il existe $A \geqslant \frac{3}{2}$ tel que ...

Donc par le théorème de minoration,

$$\lim_{n \to +\infty} I_n = +\infty.$$

3. Déterminer UNE solution de l'équation $(E): \forall t \in \mathbb{R}, \ y''(t) + y'(t) - 2y(t) = t e^t$. Solution. En conséquence, on pose $(a,b) \in \mathbb{R}^2$ et

$$y_p: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & t\left(at+b\right) \mathrm{e}^t = \left(at^2+bt\right) \mathrm{e}^t \,. \end{array}$$

Conclusion,

la fonction
$$y_p: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & \frac{3t^2-2t}{18} \operatorname{e}^t \end{array}$$
 est une solution de (E) .

4. Justifier que l'équation $(E): y' - \frac{x}{1-x^2}y = \frac{1}{1-x^2}$ admet des solutions sur I =]-1;1[et les déterminer à l'aide de la méthode de variation de la constante.

On pourra admettre que $y_0: x \mapsto \frac{1}{\sqrt{1-x^2}}$ est une solution de l'équation homogène associée.

Solution. Conclusion, l'ensemble des solutions de (E) est donné par

$$\mathscr{S} = \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{\arcsin(x) + C}{\sqrt{1 - x^2}} \end{array} \middle| C \in \mathbb{R} \right\}.$$

5. Donner une expression explicite de $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et pour tout $n\in\mathbb{N},$ $n\left(u_{n+1}-2u_n\right)+u_{n+1}=-2$. On pourra poser pour tout $n\in\mathbb{N},$ $v_n=nu_n$.

Solution. Alors pour tout $n \in \mathbb{N}$,

$$v_{n+1} = 2v_n - 2$$
.

Conclusion,

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}^*, \quad u_n = \frac{2 - 2^{n+1}}{n}.$