

Correction de l'interrogation 17 d'entrainement Suites numériques

1. Restituer le cours.

- 1.1 Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On dit que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes si et seulement si
 - $(u_n)_{n\in\mathbb{N}}$ est croissante
 - $(v_n)_{n\in\mathbb{N}}$ est décroissante
 - $v_n u_n \xrightarrow[n \to +\infty]{} 0.$

Deux suites adjacentes convergent et vers la même limite.

1.2 Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ et $l\in\mathbb{C}$. On dit que $(u_n)_{n\in\mathbb{N}}$ converge vers l si et seulement si la suite réelle $(|u_n-l|)_{n\in\mathbb{N}}$ converge vers 0:

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, \quad |u_n - l| \leqslant \varepsilon.$$

- 1.3 Soit $f: \mathbb{R} \to \mathbb{R}$ et $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ la suite définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. On suppose que f est croissante et que $u_1 \geqslant u_0$. Alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. On le démontre par récurrence bien sûr!
- 1.4 Soient $(a,b) \in \mathbb{R}^2$ et $(u_n)_{n \in \mathbb{N}}$ la suite vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} = au_{n+1} + bu_n$. Soit Δ le discriminant de (E_c) : $r^2 ar b$.
 - Si $\Delta > 0$, alors en notant r_1 et r_2 les deux racines de (E_c) ,

$$\exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \qquad u_n = \lambda r_1^n + \mu r_2^n.$$

• Si $\Delta = 0$, alors en notant r_0 l'unique racine de (E_c) ,

$$\exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \qquad u_n = (\lambda + \mu n) r_0^n.$$

• Si $\Delta < 0$, alors en notant $r_1 = r e^{i\theta}$ et $r_2 = r e^{-i\theta}$ les deux racines complexes de (E_c) ,

$$\exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \qquad u_n = r^n (\lambda \cos(n \theta) + \mu \sin(n \theta)).$$

1.5 Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $\varphi:\mathbb{N}\to\mathbb{N}$. Si φ est strictement croissante sur \mathbb{N} alors la suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ est une suite extraite ou encore une sous-suite de $(u_n)_{n\in\mathbb{N}}$.

Si $(u_n)_{n\in\mathbb{N}}$ converge alors $(u_{\varphi(n)})_{n\in\mathbb{N}}$ également et vers la même limite.

1.6 « Sous-suite, sous-suite, sous-suite! »

2. Savoir passer à la limite.

 $2.1 \lim_{n \to +\infty} u_n \geqslant 1.$

Explication : Notons ℓ sa limite. Par continuité de la fonction $x \mapsto |x-2|$ sur \mathbb{R} , on a $\lim_{n\to+\infty} |u_n-2| = |\ell-2|$. Donc par passage à la limite dans l'inégalité, on a

$$|\ell-2|\leqslant \ell \qquad \Leftrightarrow \qquad -\ell\leqslant \ell-2\leqslant \ell \qquad \Leftrightarrow \qquad -2\ell\leqslant -2\leqslant 0 \qquad \Leftrightarrow \qquad \boxed{\ell\geqslant 1}.$$

 $2.2 \lim_{n \to +\infty} u_n = 1.$

Explication: Notons ℓ sa limite. Par continuité de $x \mapsto \frac{1}{\sqrt{x}}$, on a $\frac{1}{\sqrt{u_n}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{\sqrt{\ell}}$ (ou $+\infty$ si $\ell = 0$). Donc par passage à la limite,

$$\ell = \frac{1}{\sqrt{\ell}} \qquad \Leftrightarrow \qquad \begin{cases} \ell^{3/2} = 1 \\ \ell > 0 \end{cases} \qquad \Leftrightarrow \qquad \boxed{\ell = 1}.$$

2.3 $\lim_{n \to +\infty} u_n = \pi - \arcsin(\ell)$.

Explication: Pour tout $n \in \mathbb{N}$, $u_n \in \left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$. Par conséquent,

$$\forall n \in \mathbb{N}, \quad u_n = \pi - \arcsin(v_n).$$

Puis par continuité de arcsin et la caractérisation séquentielle de la continuité,

$$\lim_{n \to +\infty} u_n = \pi - \arcsin\left(\ell\right).$$

 $2.4 \lim_{n \to +\infty} u_n \geqslant -1.$

Explication: La suite $(u_n)_{n\in\mathbb{N}}$ étant croissante, on a pour tout $n\in\mathbb{N}, u_n\geqslant u_0=-1$. Donc par passage à la limite, $\lim_{n\to+\infty}u_n\geqslant-1$.

2.5 La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et converge vers 1.

Explication: Notons pour tout $n \in \mathbb{N}^*$, $v_n = 1 + \frac{1}{n}$. Les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont adjacentes, elles sont donc monotones de monotonie opposée. Or $(v_n)_{n \in \mathbb{N}^*}$ est décroissante donc $(u_n)_{n \in \mathbb{N}}$ est croissante. De plus on sait que ces suites convergent vers des limites communes. Comme $\lim_{n \to +\infty} v_n = 1$, on en déduit que $\lim_{n \to +\infty} u_n = 1$.

 $2.6 \lim_{n \to +\infty} u_n = 0.$

Explication : Notons ℓ sa limite. Puisque $(u_{n+3})_{n\in\mathbb{N}}$, $(u_{n+2})_{n\in\mathbb{N}}$ et $(u_{n+1})_{n\in\mathbb{N}}$ sont des suites extraites de $(u_n)_{n\in\mathbb{N}}$ elles convergent toutes vers ℓ . Par passage à la limite, on a

$$\ell = \ell + \ell + \ell + 0 \qquad \Leftrightarrow \qquad \ell = 3\ell \qquad \Leftrightarrow \qquad \boxed{\ell = 0}.$$

 $2.7 \lim_{n \to +\infty} u_n = -1.$

Explication: Notons ℓ sa limite. Puisque $\lim_{n\to+\infty}\mathrm{e}^{\frac{1}{n}}=1$, on a par passage à la limite,

$$\ell = -\frac{1}{2+\ell} \qquad \Leftrightarrow \qquad \begin{cases} \ell^2 + 2\ell = -1 \\ \ell \neq -2 \end{cases} \qquad \Leftrightarrow \qquad \begin{cases} \ell^2 + 2\ell + 1 = 0 \\ \ell \neq -2 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} (\ell+1)^2 = 0 \\ \ell \neq -2 \end{cases} \qquad \Leftrightarrow \qquad [\ell = -1]$$

2.8 La suite $(u_n)_{n\in\mathbb{N}}$ est stationnaire à partir du rang 1.

Explication: On a $u_1 = \lfloor u_0 \rfloor \in \mathbb{Z}$. Donc $\lfloor u_1 \rfloor = u_1$ i.e. $u_2 = \lfloor u_0 \rfloor$. Puis par récurrence, on montre que pour tout $n \in \mathbb{N}^*$, $u_n = \lfloor u_0 \rfloor$.

 $2.9 \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 0.$

Explication: Notons $\ell = \lim_{n \to +\infty} u_n$ et $\ell' = \lim_{n \to +\infty} v_n$. Par passage à la limite, on a

$$\begin{cases} \ell = \ell + \ell' \\ \ell' = 5\ell - 3\ell' \end{cases} \Leftrightarrow \begin{cases} \ell' = 0 \\ 5\ell = 0 \end{cases} \Leftrightarrow \left[\ell = \ell' = 0 \right].$$

2.10 $\lim_{n \to +\infty} u_n \in [-5; 5].$

Explication: Notons $\ell = \lim_{n \to +\infty} u_n$. La suite $(u_{3n}) n \in \mathbb{N}$ converge vers ℓ en tant que suite extraite de $(u_n)_{n \in \mathbb{N}}$. Or pour tout $n \in \mathbb{N}$,

$$-5 < u_n < 5.$$

Par passage à la limite,

$$-5 \leqslant \ell \leqslant 5$$
.

2.11 Si $(v_n)_{n\in\mathbb{N}}$ converge vers un réel strictement positif, $\lim_{n\to+\infty}u_n=\ln\left(\lim_{n\to+\infty}v_n\right)$ et si $(v_n)_{n\in\mathbb{N}}$ converge vers 0 alors $\lim_{n\to+\infty}u_n=-\infty$.

Explication: Notons ℓ la limite de $(v_n)_{n\in\mathbb{N}}$. On a pour tout $n\in\mathbb{N}, v_n>0$. Donc par passage à la limite, $\ell\geqslant 0$. On a pour tout $n\in\mathbb{N}, u_n=\ln{(v_n)}$. Supposons que $\ell>0$. Alors, par passage à la limite, la continuité de ln et la caractérisation séquentielle de la continuité,

$$\lim_{n \to +\infty} u_n = \ln\left(\ell\right).$$

Second cas, si $\ell = 0$. Alors par caractérisation séquentielle de la limite, on en déduit que

$$\lim_{n \to +\infty} u_n = -\infty.$$

2.12 La limite de $(u_n)_{n\in\mathbb{N}}$ n'existe pas, $(u_n)_{n\in\mathbb{N}}$ diverge.

Explication: Par l'absurde, supposons que $(u_n)_{n\in\mathbb{N}}$ converge. Notons ℓ sa limite. Alors $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont deux suites extraites de $(u_n)_{n\in\mathbb{N}}$ et donc converge vers ℓ . Or pour tout $n\in\mathbb{N}$,

$$-3 \leqslant u_{2n} \leqslant -2$$
 et $u_{2n+1} > 0$.

Donc par passage à la limite,

$$-3 \leqslant \ell \leqslant -2 < 0$$
 et $\ell \geqslant 0$.

Impossible et donc $(u_n)_{n\in\mathbb{N}}$ diverge

2.13 $\lim_{n\to+\infty} u_n \in [-2; 2].$

Explication : Notons ℓ sa limite. Alors, $u_{n+1} - 2u_n \underset{n \to +\infty}{\longrightarrow} \ell - 2\ell = -\ell$. Donc par la continuité de la valeur absolue et la caractérisation séquentielle de la continuité, $|u_{n+1} - 2u_n| \underset{n \to +\infty}{\longrightarrow} |\ell|$. Donc par passage à la limite,

$$|l| \leqslant 2 \qquad \Leftrightarrow \qquad \boxed{-2 \leqslant \ell \leqslant 2}$$

2.14 La suite définie pour tout $n \in \mathbb{N}$, par $u_n = \frac{1+(-1)^n}{2}$ est solution.

Explication: La suite $(u_n)_{n\in\mathbb{N}}$ vérifie bien pour tout $n\in\mathbb{N},\ 0\leqslant u_n\leqslant 1$ et est une suite divergente. En effet, la sous-suite des termes pairs stationne et donc converge vers 1 et la sous-suite des termes impairs stationne et donc converge vers 1. Ces deux sous-suites ont donc des limites distinctes 0 et 1. Conclusion, $(u_n)_{n\in\mathbb{N}}$ diverge.

2.15 La suite définie pour tout $n \in \mathbb{N}$, par $u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ est impair} \\ \frac{1}{2} \frac{1}{n+1} & \text{si } n \text{ est pair.} \end{cases}$ est solution.

Explication : En effet :

- Pour tout $n \in \mathbb{N}$, $u_n > 0$
- De plus, on observe que pour tout $n \in \mathbb{N}$,

$$u_{2n} = \frac{1}{2} \frac{1}{2n+1} = \frac{1}{2} u_{2n+1} < u_{2n+1}$$
 car $u_{2n+1} > 0$.

Donc la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas croissante

Cependant on note que

$$\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} \frac{1}{2} \frac{1}{2n+1} = 0 \quad \text{et} \quad \lim_{n \to +\infty} u_{2n+1} = \lim_{n \to +\infty} \frac{1}{2n+1} = 0.$$

On en déduit alors que

$$\lim_{n \to +\infty} u_n = 0.$$

2.16 Explication: On note $\ell = \lim_{n \to +\infty} u_n$ et $\ell' = \lim_{n \to +\infty} v_n$. On note que $\ell \neq 0$, sinon la suite $(v_{n+1})_{n \in \mathbb{N}} = \left(\frac{1}{u_n}\right)_{n \in \mathbb{N}}$ diverge ce qui est contradictoire. Donc $\ell \neq 0$ et par passage à la limite,

$$\begin{cases} \ell = (\ell')^2 \\ \ell' = \frac{1}{\ell} \end{cases} \Leftrightarrow \begin{cases} \ell = (\ell')^2 \\ \ell' = \frac{1}{(\ell')^2} \end{cases} \Leftrightarrow \begin{cases} \ell = (\ell')^2 \\ (\ell')^3 = 1 \\ \ell' \neq 0 \end{cases} \Leftrightarrow \boxed{\ell = \ell' = 1}.$$

- 2.17 La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$, par $u_n=n\left(2+(-1)^n\right)$ est une solution. Explication: En effet,
 - On note que pour tout $n \in \mathbb{N}$, $u_n \ge n (2-1) = n$. Donc par le théorème de minoration, on en déduit que $\lim_{n \to +\infty} u_n = +\infty$.
 - De plus, pour tout $n \in \mathbb{N}^*$,

$$u_{2n} - u_{2n+1} = 6n - (2n+1) = 4n - 1 \ge 4 - 1 > 0.$$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas croissante

 $2.18 \lim_{n \to +\infty} u_n = 0.$

Explication: Notons ℓ sa limite. Puisque $u_{2n}-2u_n \underset{n\to+\infty}{\longrightarrow} \ell-2\ell=-\ell$. On en déduit que

$$|-\ell| \leqslant 0 \qquad \Leftrightarrow \qquad \boxed{\ell = 0}.$$

2.19 Si α est pair, $\lim_{n \to +\infty} u_n = 0$ ou 1 et si α est impair, $\lim_{n \to +\infty} u_n = -1$ ou 0 ou 1.

Explication: Notons ℓ sa limite. On a par passage à la limite

$$\ell = \ell^{\alpha} + 0 \qquad \Leftrightarrow \qquad \begin{array}{c} \ell = 0 \\ \text{OU} \\ \ell^{\alpha - 1} = 1 \end{array}.$$

Premier cas, si α est pair, alors $\alpha-1$ est impair et donc $\ell^{\alpha-1}=1$ implique $\ell=1$. Dans ce cas, on a donc

$$\ell \in \left\{0\,;\,1\right\}.$$

Second cas, si α est impair, alors $\alpha - 1$ est pair et donc $\ell^{\alpha - 1} = 1$ admet deux solutions 1 et -1. Dans ce cas,

$$\ell \in \{-1\,;\,0\,;\,1\}\,.$$

 $2.20 \lim_{n \to +\infty} u_n \geqslant \frac{3}{2}.$

Explication: Notons ℓ sa limite. On sait que $\lim_{n\to+\infty}\ln\left(1+\frac{1}{n}\right)=0$. Donc par passage à la limite,

$$|\ell - 3| \leqslant \ell + 0 \qquad \Leftrightarrow \qquad -\ell \leqslant \ell - 3 \leqslant \ell \qquad \Leftrightarrow \qquad -2\ell \leqslant -3 \leqslant 0 \qquad \Leftrightarrow \qquad \boxed{\ell \geqslant \frac{3}{2}}$$

- 3. Donner une forme explicite.
 - 3.1 On reconnait une suite arithmético-géométrique. Soit $\omega \in \mathbb{R}$. On a

$$3\omega - 2\omega + 15 = 0$$
 \Leftrightarrow $\omega = -15$

Fixons, $\omega = -15$. Posons pour tout $n \in \mathbb{N}$, $v_n = u_n - \omega$. Alors pour tout $n \in \mathbb{N}$,

$$3v_{n+1} = 3u_{n+1} - 3\omega = 2u_n - 15 + 45 = 2u_n + 30 = 2(u_n + 15) = 2v_n.$$

Donc la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison $\frac{2}{3}$. Donc pour tout $n\in\mathbb{N}$

$$v_n = \left(\frac{2}{3}\right)^n v_0 = \left(\frac{2}{3}\right)^n (u_0 + 15) = \left(\frac{2}{3}\right)^n (-11 + 15) = 4 \times \left(\frac{2}{3}\right)^n.$$

Ainsi,

$$\forall n \in \mathbb{N}, \qquad u_n = v_n + \omega = 4 \times \left(\frac{2}{3}\right)^n - 15.$$

Conclusion,

$$\forall n \in \mathbb{N}, \quad u_n = 4 \times \left(\frac{2}{3}\right)^n - 15.$$

On observe que $u_1 = 4 \times \frac{2}{3} - 15 = \frac{8-45}{3} = -\frac{37}{3}$.

3.2 On reconnait une suite récurrente linaire d'ordre 2. Soit (E_c) l'équation caractéristique associée :

$$(E_c)$$
: $r^2 - 2\sqrt{3}r + 4 = 0$.

Soit Δ son discriminant. $\Delta=4\times 3-16=-4<0$. Donc les racines sont complexes et conjugués : $\frac{2\sqrt{3}\pm 2i}{2}=\sqrt{3}\pm i=2\frac{\sqrt{3}\pm i}{2}=2\,\mathrm{e}^{\pm i\frac{\pi}{6}}$. Ainsi, il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, \qquad u_n = 2^n \left(\lambda \cos \left(n \frac{\pi}{6} \right) + \mu \sin \left(n \frac{\pi}{6} \right) \right).$$

Or $u_0 = 0$ et $u_1 = 3$. Donc

$$\begin{cases} \lambda = 0 \\ 2\left(\lambda \frac{\sqrt{3}}{2} + \mu \frac{1}{2}\right) = 3 \end{cases} \Leftrightarrow \begin{cases} \lambda = 0 \\ \mu = 3. \end{cases}$$

Donc $\forall n \in \mathbb{N}, u_n = 2^n \times 3\sin\left(n\frac{\pi}{6}\right)$. Conclusion,

$$\forall n \in \mathbb{N}, \qquad u_n = 3 \times 2^n \sin\left(n\frac{\pi}{6}\right).$$

3.3 Posons pour tout $n \in \mathbb{N}$, $v_n = u_n - 3n$. Alors,

$$\begin{aligned} v_{n+2} &= u_{n+2} - 3\left(n+2\right) = 10u_{n+1} - 25u_n + 48n - 24 - 3n - 6 \\ &= 10\left(v_{n+1} + 3\left(n+1\right)\right) - 25\left(v_n + 3n\right) + 45n - 30 \\ &= 10v_{n+1} + 30n + 30 - 25v_n - 75n + 45n - 30 \\ &= 10v_{n+1} - 25v_n. \end{aligned}$$

La suite $(v_n)_{n\in\mathbb{N}}$ est donc une suite récurrente linéaire d'ordre 2. Soit (E_c) son équation caractéristique :

$$(E_c): r^2 - 10r + 25 = 0 \Leftrightarrow (r-5)^2 = 0 \Leftrightarrow r = 5.$$

L'équation (E_c) admet donc une unique solution $r_0 = 5$. Alors, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, \quad v_n = 5^n (\lambda + \mu n).$$

Or $v_0 = u_0 - 0 = -1$ et $v_1 = u_1 - 3 = 5$. Donc

$$\begin{cases} \lambda = -1 \\ 5 \left(\lambda + \mu \right) = 5 \end{cases} \Leftrightarrow \begin{cases} \lambda = -1 \\ -1 + \mu = 1 \end{cases} \Leftrightarrow \begin{cases} \lambda = -1 \\ \mu = 2 \end{cases}$$

Donc $\forall n \in \mathbb{N}, v_n = 5^n (2n - 1)$. Par suite,

$$\forall n \in \mathbb{N}, \quad u_n = v_n + 3n = 5^n (2n - 1) + 3n.$$

Conclusion,

$$\forall n \in \mathbb{N}, \qquad u_n = 5^n (2n - 1) + 3n.$$

3.4 On a pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$. Donc la suite $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison 3. Donc pour tout $n \in \mathbb{N}$,

$$u_n = u_0 + 3n = 3n + 1.$$

Dès lors,

$$\forall n \in \mathbb{N}, \qquad U_n = \sum_{k=0}^n u_k = \sum_{k=0}^n (3k+1) = 3\frac{n(n+1)}{2} + n + 1 = \frac{(n+1)(3n+2)}{2}.$$

Conclusion,

$$\forall n \in \mathbb{N}, \qquad U_n = \frac{(n+1)(3n+2)}{2}.$$

3.5 On démontre aisément par récurrence que pour tout $n \in \mathbb{N}$, $u_n > 0$. Posons alors pour tout $n \in \mathbb{N}$, $v_n = \ln(u_n)$. Alors pour tout $n \in \mathbb{N}$,

$$\ln\left(u_{n+2}\right) = \ln\left(\frac{u_{n+1}^5}{u_n^6}\right) = 5\ln\left(u_{n+1}\right) - 6\ln\left(u_n\right).$$

i.e.

$$v_{n+2} = 5v_{n+1} - 6v_n.$$

La suite $(v_n)_{n\in\mathbb{N}}$ est donc une suite récurrente linéaire d'ordre 2. Soit (E_c) son équation caractéristique :

$$(E_c)$$
: $r^2 - 5r + 6 = 0$.

Soit Δ son discriminant. On a $\Delta=25-24=1$. Donc (E_c) admet deux racines :

$$r_1 = \frac{5-1}{2} = 2$$
 et $r_2 = \frac{5+1}{2} = 3$.

Alors, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, \quad v_n = \lambda \, 2^n + \mu 3^n$$

Or $v_0 = \ln(u_0) = \ln(e^2) = 2$ et $v_1 = \ln(e^5) = 5$. Donc

$$\begin{cases} \lambda + \mu = 2 \\ 2\lambda + 3\mu = 5 \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu = 2 \\ \mu = 1 \end{cases} \qquad L_2 \leftarrow L_2 - 2L_1 \qquad \Leftrightarrow \qquad \lambda = \mu = 1.$$

Donc $\forall n \in \mathbb{N}, v_n = 2^n + 3^n$. Par suite,

$$\forall n \in \mathbb{N}, \qquad u_n = e^{v_n} = e^{2^n + 3^n}.$$

Conclusion,

$$\forall n \in \mathbb{N}, \qquad u_n = e^{2^n + 3^n}.$$

4. Monotonie.

- 4.1 La suite de terme général $\frac{1}{n}$ est décroissante et la suite de terme général $\frac{1}{n+1}$ est également décroissante donc par somme la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 4.2 Pour tout $n \in \mathbb{N}^*$, on a

$$u_{n+1} - u_n = n+1 + \frac{1}{n+1} - n - \frac{1}{n} = 1 + \frac{1}{n+1} - \frac{1}{n} = \frac{n^2 + n + n - n - 1}{(n+1)n} = \frac{n^2 + n - 1}{(n+1)n}.$$

Or pour tout $n \ge 1$, $n-1 \ge 0$ donc $n^2+n-1 \ge 0$ et ainsi $u_{n+1}-u_n \ge 0$.

Conclusion, la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante

4.3 Soit $f: x \mapsto \operatorname{sh}(x^2 - x + 3)$. La fonction f est définie et même dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$f'(x) = (2x - 1) \operatorname{ch} (x^2 - x + 3).$$

Pour tout $x \in \mathbb{R}$, ch $(x^2 - x + 3) \ge 1 > 0$. Donc f' est strictement négative sur $]-\infty$; $\frac{1}{2}[$ et strictement positive sur $]\frac{2}{3}$; $+\infty[$. On en déduit donc le tableau de variation suivant :

x	$-\infty$	$\frac{1}{2}$	$+\infty$
f		/	

Donc f est strictement croissante sur $[1; +\infty[$. Conclusion, la suite $(u_n)_{n\in\mathbb{N}^*}$ est strictement croissante

4.4 On constate que pour tout $n \in \mathbb{N}^*$, $u_n > 0$. De plus, pour tout $n \in \mathbb{N}^*$,

$$\frac{u_{n+1}}{u_n} = \frac{n+1}{3^{n+1}} \frac{3^n}{n} = \left(1 + \frac{1}{n}\right) \frac{1}{3} \leqslant (1+1) \frac{1}{3} = \frac{2}{3} < 1.$$

Donc pour tout $n \in \mathbb{N}^*$, $u_{n+1} < u_n$ et la suite $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante

4.5 La fonction $f \ x \mapsto \sqrt{2+x}$ est bien définie sur $[-2\,;\,+\infty[$. De plus elle est strictement croissante sur cet intervalle en tant que composée de la fonction affine $x\mapsto x+2$ et de la fonction racine carrée toutes deux strictement croissantes. Or pour tout $n\in\mathbb{N},\ u_{n+1}=f(u_n).$ De plus, $u_1=f(u_0)=\sqrt{2+u_0}=\sqrt{2+1}=\sqrt{3}>1=u_0$ Montrons alors par récurrence que $(u_n)_{n\in\mathbb{N}}$ est strictement croissante. Posons pour tout $\in\mathbb{N},\ u_{n+1}>u_n.$

Initialisation. Si n = 0, alors on a vu $u_1 > u_0$ donc $\mathcal{P}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$. Soit $n \in \mathbb{N}$. Supposons $\mathscr{P}(n)$ alors, $u_{n+1} > u_n$. Puisque f est strictement croissante,

$$u_{n+2} = f(u_{n+1}) > f(u_n) = u_{n+1}.$$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion,

la suite
$$(u_n)_{n\in\mathbb{N}}$$
 est strictement croissante.

5. Déterminer la limite d'une suite.

5.1 Pour tout $k \in \mathbb{N}^*$, on a par croissance de la fonction arctangente, $\operatorname{arctan}(k) \geqslant \arctan(1) = \frac{\pi}{4}$. Par conséquent, pour tout $n \in \mathbb{N}$,

$$u_n = \sum_{k=0}^n \arctan(k) = 0 + \sum_{k=1}^n \arctan(k) \geqslant \sum_{k=1}^n \frac{\pi}{4} = n \frac{\pi}{4} \xrightarrow[n \to +\infty]{} + \infty.$$

Donc par le théorème de minoration, on en déduit que

$$\lim_{n \to +\infty} u_n = +\infty.$$

5.2 On sait que pour tout $(x, y) \in \mathbb{R}^2$,

$$|f(x) - f(y)| \le \frac{1}{3} |x - y|.$$

Donc pour tout $n \in \mathbb{N}$, en prenant $x = u_n$ et y = 4, on a

$$|f(u_n) - f(4)| \le \frac{1}{3} |u_n - 4|.$$

Or 4 est un point fixe de f et $f(u_n) = u_{n+1}$. Donc

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - 4| \leqslant \frac{1}{3} |u_n - 4|.$$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc une suite contractante. Posons pour tout $n\in\mathbb{N}$, la propriété

$$\mathscr{P}(n)$$
: « $|u_n - 4| \leqslant \frac{1}{3^n} |u_0 - 4|$. »

Démontrons $\mathcal{P}(n)$ par récurrence.

Initialisation. Si n = 0. Alors $\frac{1}{3^0} |u_0 - 4| = |u_0 - 4| \ge |u_0 - 4|$ et donc $\mathscr{P}(0)$ est vraie. Hérédité. Soit $n \in \mathbb{N}$. Supposons $\mathscr{P}(n)$ vraie. Alors,

$$|u_n - 4| \leqslant \frac{1}{3^n} |u_0 - 4|.$$

Donc par ce qui précède,

$$|u_{n+1} - 4| \leqslant \frac{1}{3} |u_n - 4| \leqslant \frac{1}{3} \times \frac{1}{3^n} |u_0 - 4| = \frac{1}{3^{n+1}} |u_0 - 4|.$$

Donc $\mathcal{P}(n+1)$ est vraie. Conclusion, pour tout $n \in \mathbb{N}$,

$$|u_n - 4| \leqslant \frac{1}{3^n} |u_0 - 4|.$$

Or $\frac{1}{3^n} |u_0 - 4| \underset{n \to +\infty}{\longrightarrow} 0$. Donc par le théorème d'encadrement,

$$|u_n-4| \underset{n\to+\infty}{\longrightarrow} 0$$

i.e. $(u_n)_{n\in\mathbb{N}}$ converge vers 4

5.3 Effectuons un développement limité. Pour tout $n \ge 2$, $\frac{n-1}{n+1} > 0$ et on a

$$u_n = \left(\frac{n-1}{n+1}\right)^n = \left(\frac{1-\frac{1}{n}}{1+\frac{1}{n}}\right)^n = e^{n\ln\left(1-\frac{1}{n}\right)-n\ln\left(1+\frac{1}{n}\right)}.$$

Or $\ln(1+u) \underset{u\to 0}{=} u + o(u)$. Donc en posant $u = -\frac{1}{n} \underset{n\to +\infty}{\longrightarrow} 0$, on a

$$\ln\left(1 - \frac{1}{n}\right) \underset{n \to +\infty}{=} -\frac{1}{n} + o\left(\frac{1}{n}\right).$$

De même en posant $u = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, on a aussi,

$$\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{=} \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Ainsi

$$u_n \underset{n \to +\infty}{=} e^{n\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right) - n\left(\frac{1}{n} + o\left(\frac{1}{n}\right)\right)} \underset{n \to +\infty}{=} e^{-1 + o(1) - 1 + o(1)} \underset{n \to +\infty}{=} e^{-2} e^{o(1)} \underset{n \to +\infty}{=} e^{-2} (1 + o(1))$$

Ainsi

$$u_n \underset{n \to +\infty}{\sim} e^{-2}$$
.

Conclusion, la suite $(u_n)_{n\in\mathbb{N}}$ converge et

$$\lim_{n \to +\infty} u_n = e^{-2}.$$

5.4 On reconnait une suite arithmético-géométrique! Soit $\omega \in \mathbb{R}$. On a

$$\omega = \frac{\omega - 8}{2} \qquad \Leftrightarrow \qquad \omega = -8.$$

Posons $\omega = -8$ et pour tout $n \in \mathbb{N}$, $v_n = u_n - \omega = u_n + 8$. Alors pour tout $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1} + 8 = \frac{u_n - 8}{2} + 8 = \frac{u_n - 8 + 16}{2} = \frac{u_n + 8}{2} = \frac{v_n}{2}.$$

Donc la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison 1/2. Donc pour tout $n\in\mathbb{N}$,

$$v_n = \frac{v_0}{2^n} = \frac{u_0 + 8}{2^n} = \frac{3}{2^n}.$$

Donc pour tout $n \in \mathbb{N}$,

$$u_n = v_n + \omega = \frac{3}{2^n} - 8.$$

Conclusion,

$$\lim_{n \to +\infty} u_n = -8.$$

5.5 Méthode 1. Posons $f: x \mapsto x^2 + 1$. La fonction f est définie sur \mathbb{R} et strictement croissante sur \mathbb{R}_+ , une partie stable de f. Or pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + 2 \ge 2 > 0$. Donc pour tout $n \in \mathbb{N}^*$, $u_n \in \mathbb{R}_+$ et comme pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, on en déduit (par récurrence) que la suite $(u_n)_{n \in \mathbb{N}^*}$ est monotone.

Premier cas, la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante. Comme elle est minorée par 0, on en déduit qu'elle converge vers un réel ℓ . La fonction f étant continue, par passage à la limite, on a

$$\ell = f(\ell)$$
 \Leftrightarrow $\ell = \ell^2 + 2$ \Leftrightarrow $\ell^2 - \ell + 2 = 0$.

Soit Δ le discriminant associé : $\Delta=1-8<0$ ce qui est contradictoire.

Second cas, la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante. De même que précédemment, si elle converge, elle doit nécessaire converger vers un point fixe de f. Or nous avons vu que f ne possède aucun point fixe. On en déduit que $(u_n)_{n\in\mathbb{N}}$ n'est pas convergente. Donc par sa monotonie nécessairement elle diverge vers $+\infty$.

Conclusion, le seul cas possible est le suivant :

$$\lim_{n \to +\infty} u_n = +\infty.$$

Méthode 2. Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n^2 + 2 \geqslant 2 > 1.$$

Donc pour tout $n \in \mathbb{N}$, $u_n^2 > u_n > 1$ et donc

$$u_{n+1} > u_n + 2.$$

Donc par récurrence, $u_n > u_0 + 2n$ ou par une petite somme télescopique, on a

$$u_{n+1} - u_0 = \sum_{k=0}^{n} (u_{k+1} - u_k) > \sum_{k=0}^{n} 2 = 2(n+1).$$
 joli non?

Donc par le théorème de minoration,

$$\lim_{n \to +\infty} u_n = +\infty$$