

Correction de l'exercice Automne 09 Bijection

1. La fonction $x \mapsto x^2 + 1$ est définie sur \mathbb{R} et la fonction $x \mapsto \frac{2}{x}$ est définie sur \mathbb{R}^* . Donc la fonction f est définie sur \mathbb{R}^* . Conclusion,

$$\mathscr{D}_f = \mathbb{R}^*.$$

2. La fonction f est continue et dérivable sur son ensemble de définition $\mathscr{D}_f = \mathbb{R}^*$ comme différence de fonctions définies et dérivables sur leurs ensembles de définition et de plus, pour tout $x \in \mathbb{R}^*$,

$$f'(x) = 2x - \frac{-1}{x^2} = 2x + \frac{2}{x^2} = \frac{2(x^3 + 1)}{x^2}.$$

La fonction f est dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*$, $f'(x) = \frac{2(x^3+1)}{x^2}$.

On en déduit les équivalences suivantes

$$f'(x) \ge 0 \qquad \Leftrightarrow \qquad \frac{2(x^3+1)}{x^2} \ge 0$$

$$\Leftrightarrow \qquad x^3+1 \ge 0 \qquad \text{car } \forall x \in \mathbb{R}^*, \ x^2 \ge 0$$

$$\Leftrightarrow \qquad x^3 \ge -1$$

$$\Leftrightarrow \qquad x \ge -1 \qquad \text{car la fonction cube est bijective sur } \mathbb{R}.$$

On obtient ainsi le tableau de variation de la fonction f:

x	$-\infty$	-1	() +∞
f'(x)	_	0	+	+
f				

Complétons le tableau. D'une part, $f(-1) = (-1)^2 + 1 - \frac{2}{-1} = 4$. D'autre part, quand $x \to -\infty$, on a $\frac{2}{x} \to 0$ et $x^2 + 1 \to +\infty$, donc

$$\lim_{x \to -\infty} f(x) = +\infty.$$

De même, quand $x \to +\infty$, on a $\frac{2}{x} \to 0$ et $x^2 + 1 \to +\infty$, donc

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Enfin, quand $x \to 0^-$, on a $-\frac{2}{x} \to +\infty$ et $x^2 + 1 \to 1$, donc

$$\lim_{x \to 0^{-}} f(x) = +\infty.$$

De même, quand $x \to 0^+$, on a $-\frac{2}{x} \to -\infty$ et $x^2 + 1 \to 1$, donc

$$\lim_{x \to 0^+} f(x) = -\infty.$$

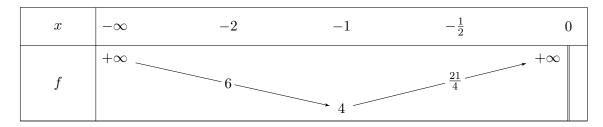
Conclusion, on obtient le tableau de variation de f suivant :

x	$-\infty$	-1	() +∞
f'(x)	_	0	+	+
f	+∞	4	+∞	+∞

3. Calculons,

$$f(-2) = 4 + 1 - \frac{2}{-2} = 5 + 1 = 6$$
 et $f\left(-\frac{1}{2}\right) = \frac{1}{4} + 1 - \frac{2}{-\frac{1}{2}} = \frac{5}{4} + 4 = \frac{21}{4}$.

Donc par la question précédente, on observe que



Conclusion,

$$f\left(\left[-2;-\frac{1}{2}\right]\right) = \left[4;6\right].$$

4. Soit $x\in \mathscr{D}_f=\mathbb{R}^*.$ On a les équivalences suivantes :

$$f(x) = 0$$
 \Leftrightarrow $x^2 + 1 - \frac{2}{x} = 0$ \Leftrightarrow $x^3 + x - 2 = 0$ $\operatorname{car} x \neq 0$.

On observe que 1 est une racine évidente : $1^3 + 1 - 2 = 0$ Donc

$$x^{3} + x - 2 = (x - 1)(x^{2} + x + 2).$$

Soit Δ le discriminant de $X^2+X+2,\,\Delta=1-8=-7<0.$ Donc $x^2+x+2\neq 0.$ Ainsi,

$$f(x) = 0$$
 \Leftrightarrow $(x-1)(x^2 + x + 2) = 0$ \Leftrightarrow $x-1 = 0$ \Leftrightarrow $x = 1$.

Conclusion, pour $x \in \mathcal{D}_f$,

$$f(x) = 0 \qquad \Leftrightarrow \qquad x = 1.$$

5. Par les questions précédentes, on a

x	$-\infty$	-1	0	1	$+\infty$
f	$+\infty$	4	+∞ -∞	0	+∞

Par conséquent,

$$f^{\leftarrow}(\mathbb{R}_+) =]-\infty; 0[\cup[1; +\infty[.$$

6. Soit $x \in \mathcal{D}_f$. On a les équivalences suivantes :

$$f(x) = 4 \qquad \Leftrightarrow \qquad x^2 + 1 - \frac{2}{x} = 4$$
$$\Leftrightarrow \qquad x^3 + x - 2 = 4x \qquad \text{car } x \neq 0$$
$$\Leftrightarrow \qquad x^3 - 3x - 2 = 0.$$

On observe que -1 est une racine évidente. Donc

$$x^3 - 3x - 2 = (x+1)(x^2 - x - 2).$$

Soit Δ le discriminant de X^2-X-2 . On a $\Delta=1+8=9$. Donc les racines associées sont $\frac{1-3}{2}=-1$ et $\frac{1+3}{2}=2$. Ainsi

$$x^{3} - 3x - 2 = (x+1)(x+1)(x-2) = (x+1)^{2}(x-2).$$

D'où,

$$f(x) = 4$$
 \Leftrightarrow $x+1=0$ OU $x-2=0$ \Leftrightarrow $x=-1$ OU $x=2$.

Conclusion, pour $x \in \mathcal{D}_f$,

$$f(x) = 4$$
 \Leftrightarrow $x = -1$ OU $x = 2$.

7. Par la question précédente, 4 possède deux antécédents, -1 et 2. Conclusion,

la fonction
$$f$$
 n'est pas injective sur \mathcal{D}_f .

8. La fonction f est continue et strictement croissante sur $]0; +\infty[$. Donc par le théorème de la bijection, f restreinte à $]0; +\infty[$ définit une bijection de $]0; +\infty[$ dans $f(]0; +\infty[) =$ $\lim_{\substack{x \to 0 \\ x > 0}} f(x); \lim_{\substack{x \to +\infty \\ x > 0}} f(x) = \mathbb{R}.$ Notamment tous réel $y \in \mathbb{R}$ admet par f un antécédent dans \mathbb{R}_+^* et donc notamment dans \mathscr{D}_f . Conclusion,

la fonction f est surjective dans \mathbb{R} .