

Correction de l'exercice Hiver 06 Suites

Solution de l'exercice 1 Posons pour tout $n \in \mathbb{N}$, $u_n = \frac{\sqrt{n}\sin(n)}{n^2+2n+3}$. On a

$$\forall n \in \mathbb{N}. \quad n^2 + 2n + 3 \ge n^2.$$

Donc

$$\forall n \in \mathbb{N}^*, \quad 0 \leqslant |u_n| = \frac{\sqrt{n}|\sin(n)|}{n^2 + 2n + 3} \leqslant \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}}$$

Or $\sum_{n\in\mathbb{N}^*}\frac{1}{n^{3/2}}$ converge en tant que série de Riemann d'exposant $\alpha=3/2>1$. Donc par le théorème de comparaison des séries à termes positifs,

$$\sum_{n\in\mathbb{N}}|u_n| \text{ converge.}$$

Autrement dit $\sum_{n\in\mathbb{N}^*}u_n$ converge absolument. Or la convergence absolue implique la convergence. Conclusion,

$$\sum_{n \in \mathbb{N}} u_n \text{ converge.}$$

Solution de l'exercice 2

1. Pour tout $n \in \mathbb{N}$, on pose $\mathscr{P}(n)$: « u_n et v_n existent et sont strictement positifs » . Procédons par récurrence.

Initialisation. Si n=0, alors u_0 et v_0 existent et sont strictement positifs. Donc $\mathscr{P}(0)$ est vraie. Hérédité. Soit $n\in\mathbb{N}$. Montrons que $\mathscr{P}(n)\Rightarrow\mathscr{P}(n+1)$. On suppose que $\mathscr{P}(n)$ est vraie. Alors, u_n et v_n existent et sont strictement positifs. Donc $u_n+v_n>0$ et ainsi, $u_{n+1}=\frac{u_n^2}{u_n+v_n}$ existe et de même $v_{n+1}=\frac{v_n^2}{u_n+v_n}$ existe. De plus comme $u_n^2>0$, $u_n+v_n>0$ et $v_n^2>0$, on en déduit également que $u_{n+1}>0$ et $v_{n+1}>0$. Donc $\mathscr{P}(n+1)$ est vraie.

Conclusion, pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie :

Les suites
$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$ existent et que pour tout $n\in\mathbb{N}, u_n>0$ et $v_n>0$.

2. Soit $n \in \mathbb{N}$. On a $v_n > 0$ et donc $u_n + v_n > u_n$. Donc $\frac{1}{u_n + v_n} < \frac{1}{u_n}$. Puisque $u_n^2 > 0$, on en déduit que $u_{n+1} = \frac{u_n^2}{u_n + v_n} < \frac{u_n^2}{u_n} = u_n$. Ainsi, la suite $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante. Par symétrie des hypothèses, on démontre de même que $(v_n)_{n \in \mathbb{N}}$ est strictement décroissante. Conclusion,

Les suites
$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$ sont strictement décroissantes.

3. On a vu que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0. Donc par le théorème de convergence monotone, on en déduit que $(u_n)_{n\in\mathbb{N}}$ converge. De même pour $(v_n)_{n\in\mathbb{N}}$. Conclusion,

Les suites
$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$ convergent.

On note u la limite de u et v la limite de v.

4. Soit $n \in \mathbb{N}$. On a

$$v_{n+1} - u_{n+1} = \frac{u_n^2}{u_n + v_n} - \frac{v_n^2}{u_n + v_n} = \frac{v_n^2 - u_n^2}{u_n + v_n} = \frac{(v_n - u_n)(v_n + u_n)}{u_n + v_n} = v_n - u_n.$$

Conclusion,

La suite
$$(v_n - u_n)_{n \in \mathbb{N}}$$
 est constante.

5. Par la question précédente, on obtient que

$$\forall n \in \mathbb{N}, v_n - u_n = v_0 - u_0.$$

Donc par passage à la limite,

$$v - u = v_0 - u_0.$$

De plus pour tout $n \in \mathbb{N}$, $u_n \ge 0$ donc $u \ge 0$ et donc $v = v_0 - u_0 + u \ge v_0 - u_0 > 0$. Dès lors, $u_n + v_n \xrightarrow[n \to +\infty]{} u + v \ge v > 0$. Or pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2}{u_n + v_n}$. Donc par passage à la limite,

$$u = \frac{u^2}{u+v} \qquad \Leftrightarrow \qquad u^2 + uv = u^2 \qquad \text{car } u+v > 0$$

$$\Leftrightarrow \qquad uv = 0$$

$$\Leftrightarrow \qquad u = 0 \qquad \text{car } v > 0.$$

Par suite, puisque $v = v_0 - u_0 + u$, on en déduit que $v = v_0 - u_0$. Conclusion,

$$u = 0$$
 et $v = v_0 - u_0$.