

Correction de l'exercice Printemps 09 Probabilités / Analyse asymptotique

Solution de l'exercice 1 Notons A l'évènement « Aly tire » alors \overline{A} est l'évènement « Seydina tire ».

1. La cible est atteinte ou non. Donc $X(\Omega) = [0;1]$ et donc X suit une loi binomiale. Calculons son paramètre $p = \mathbb{P}(X = 1)$. La famille (A, \overline{A}) est un système complet d'évènements. Donc par la formule des probabilités totales,

$$\mathbb{P}\left(X=1\right) = \mathbb{P}\left(X=1 \mid A\right) \mathbb{P}\left(A\right) + \mathbb{P}\left(X=1 \mid \overline{A}\right) \mathbb{P}\left(\overline{A}\right).$$

D'après l'énoncé, $\mathbb{P}\left(\overline{A}\right)=\frac{2}{3}$ et $\mathbb{P}\left(A\right)=1-\mathbb{P}\left(\overline{A}\right)=\frac{1}{3}$. De plus, Aly touche la cible 9 fois sur 10 : $\mathbb{P}\left(X=1\mid A\right)=\frac{9}{10}$ et Seydina 6 fois sur 10, $\mathbb{P}\left(X=1\mid \overline{A}\right)=\frac{6}{10}$. D'où,

$$\mathbb{P}(X=1) = \frac{9}{10} \times \frac{1}{3} + \frac{6}{10} \times \frac{2}{3} = \frac{3}{10} + \frac{4}{10} = \frac{7}{10}.$$

Conclusion,

$$X \sim \mathscr{B}\left(\frac{7}{10}\right)$$
.

2. On chercher $\mathbb{P}(\overline{A} \mid X = 1)$. Puisque (X = 1) est non négligeable, par la formule de Bayes, on a

$$\mathbb{P}\left(\overline{A} \mid X = 1\right) = \frac{\mathbb{P}\left(X = 1 \mid \overline{A}\right) \mathbb{P}\left(\overline{A}\right)}{\mathbb{P}\left(X = 1\right)}.$$

Si Seydina tire, il a 6 chances sur 10 d'atteindre la cible : $\mathbb{P}\left(X=1 \mid \overline{A}\right) = \frac{6}{10}$. Seydina a deux chances sur trois de tirer : $\mathbb{P}\left(\overline{A}\right) = \frac{2}{3}$. Enfin, par la question précédente, $\mathbb{P}\left(X=1\right) = \frac{7}{10}$. D'où,

$$\mathbb{P}\left(\overline{A} \mid X = 1\right) = \frac{\frac{6}{10} \times \frac{2}{3}}{\frac{7}{10}} = \frac{4}{7}.$$

Conclusion,

$$\boxed{\mathbb{P}\left(\overline{A}\mid X=1\right) = \frac{4}{7}.}$$

Solution de l'exercice 2 Pour tout $n \ge 1$, on a

$$u_n = \ln\left(e^{2n}\right) + \ln\left(1 + ne^{-2n}\right) - 2n\left(1 + \frac{1}{n^2}\right)^{1/2}$$
 car $n \ge 0$.

Or par croissance comparée, $h = n e^{-2n} \underset{n \to +\infty}{\longrightarrow} 0$ et $\ln (1+h) \underset{h \to 0}{=} h + o(h)$. De plus, comme $\frac{1}{n^2} \underset{n \to +\infty}{\longrightarrow} 0$, on a aussi, $\left(1 + \frac{1}{n^2}\right)^{1/2} \underset{n \to +\infty}{=} 1 + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$. Par conséquent,

$$u_n \underset{n \to +\infty}{=} 2n + n e^{-2n} + o\left(n e^{-2n}\right) - 2n\left(1 + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) \underset{n \to +\infty}{=} n e^{-2n} + o\left(n e^{-2n}\right) - \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Par croissance comparée, on a $n^2 e^{-2n} \xrightarrow[n \to +\infty]{} 0$ i.e. $n e^{-2n} = o\left(\frac{1}{n}\right)$ et donc aussi $o\left(n e^{-2n}\right) = o\left(\frac{1}{n}\right)$. Ainsi,

$$u_n \underset{n \to +\infty}{=} -\frac{1}{n} + o\left(\frac{1}{n}\right).$$

Conclusion,

$$u_n \underset{n \to +\infty}{\sim} -\frac{1}{n}.$$