

TD 19 Espaces Vectoriels de dimension finie

Dimension et base

Exercice 1 Soient G et F deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}$. Montrer que si dim $F + \dim G > n$ alors $F \cap G \neq \{0_E\}$.

Exercice 2 Déterminer la dimension et une base des sous-espaces vectoriels de $E = \mathbb{R}_3[X]$ suivants

- 1. $F_1 = \{ P \in E \mid P(2) = 0 \}$
- 2. $F_2 = \{ P \in E \mid P + P'' = 0 \}$
- 3. $F_3 = \{ P \in E \mid P(1) = P(2) = P(3) = 0 \}$
- 4. $F_4 = \left\{ P \in E \mid \int_0^2 P(x) \, \mathrm{d}x = 0 \right\}$
- 5. $F_5 = \left\{ P \in E \mid \int_0^2 P(x) \, \mathrm{d}x = 0, \ P(1) = 0 \right\}$
- 6. $F_6 = \{ P \in E \mid P(1) = P'(1) = 0 \}$
- 7. $F_7 = \{ P \in E \mid P(X+1) = 2P(X) \}$

Exercice 3 Dans \mathbb{R}^4 , on considère les vecteurs $u_1 = (1, 0, 1, 0), u_2 = (0, 1, -1, 0), u_3 = (1, 1, 1, 1), u_4 = (0, 0, 1, 0)$ et $u_5 = (1, 1, 0, -1)$. On pose $F = \text{Vect}(u_1, u_2, u_3)$ et $G = \text{Vect}(u_4, u_5)$. Quelles sont les dimensions de G, F, F + G et $F \cap G$?

Exercice 4 On considère $E = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$ et $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = z + t\}$. Déterminer dim E, dim E, dim E, dim E.

Exercice 5 Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $\mathscr{C} = (e_1, \dots, e_n)$ une base de E. On considère pour tout $i \in \{1, \dots, n\}, \ \varepsilon_i = \sum_{k=1}^i e_k$.

- 1. Montrer que $\mathscr{C}' = (\varepsilon_1, \dots, \varepsilon_n)$ est une base de E.
- 2. Soit $x \in E$. Exprimer les coordonnées de x dans \mathscr{C}' en fonction de ses coordonnées dans \mathscr{C} .

Exercice 6 Soit E l'ensemble des fonction $f : \mathbb{R} \to \mathbb{R}$ telles qu'il existe $(a, b, c) \in \mathbb{R}^3$ pour lesquels :

$$\forall x \in \mathbb{R}, \ f(x) = (ax^2 + bx + c)\cos(x)$$

- 1. Montrer que E est un \mathbb{R} -espace vectoriel.
- 2. Déterminer une base et la dimension de E.

Exercice 7 Soit $p \in \mathbb{N}^*$ et E l'ensemble des suites réelles p-périodiques, i.e. l'ensemble des suites réelles $(u_n)_{n \in \mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \ u_{n+p} = u_n$$

Montrer que E est un \mathbb{R} -espace vectoriel de dimension finie et déterminer celle-ci. (on donnera à ce titre une base de E).

Rang d'une famille de vecteur

Exercice 8 Déterminer le rang des familles suivantes définies dans \mathbb{R}^4 par :

- 1. $u_1 = (1, 1, 1, 1), u_2 = (1, -1, 1, -1)$ et $u_3 = (1, 0, 1, 1)$.
- 2. $u_1 = (1, 1, 0, 1), u_2 = (1, -1, 1, 0), u_3 = (2, 0, 1, 1)$ et $u_4 = (0, 2, -1, 1)$.

Exercice 9 Dans $\mathbb{R}_3[X]$, on considère les polynomes :

$$P_1 = 1 + 2X + 3X^2 + 4X^3$$
, $P_2 = 2 + 3X + 4X^2 + 5X^3$, $P_3 = 1 + X + X^2 + X^3$
 $P_4 = 1 - X + X^2 - X^3$, $P_5 = 1 + 2X + X^2 + 2X^3$

- 1. Déterminer le rang de la famille $(P_1, P_2, P_3, P_4, P_5)$.
- 2. On note $F = \text{Vect}(P_1, P_2, P_3, P_4, P_5)$ et $G = \text{Vect}(X^3)$. Montrer que F et G sont supplémentaires dans $\mathbb{R}^3[X]$.

Exercice 10 Dans le \mathbb{R} -espace vectoriel $E = \mathscr{F}(]-1,1[,\mathbb{R})$ on considère les fonctions définies pour tout $x \in]-1,1[$ par

$$f_1(x) = \sqrt{\frac{1+x}{1-x}}, \ f_2(x) = \sqrt{\frac{1-x}{1+x}}, \ f_3(x) = \frac{1}{\sqrt{1-x^2}} \ \text{et} \ f_4(x) = \frac{x}{\sqrt{1-x^2}}.$$

Quel est le rang de la famille (f_1, f_2, f_3, f_4) ?