

## TD27bis Déterminant

Exercice 1 Dans chaque cas, montrer que l'opérateur est un produit scalaire.

- 1. Soit  $\langle \cdot, \cdot \rangle$  défini pour tout  $(f,g) \in \mathcal{C}^1([-1;1],\mathbb{R})$ , par  $\langle f,g \rangle = \int_{-1}^1 f'(t)g'(t) dt +$ f(0)q(0) est un produit scalaire.
- 2. Soit  $\langle \cdot, \cdot \rangle$  défini pour tout  $(P,Q) \in (\mathbb{R}_n[X])^2$ , par  $\langle P,Q \rangle = \sum_{k=0}^n P^{(k)}(0)Q^{(k)}(0)$ est un produit scalaire.
- 3. Soit  $\langle \cdot, \cdot \rangle$  défini pour tout  $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$ , par  $\langle A, B \rangle = \operatorname{tr}({}^tAB)$  est un produit scalaire.
  - On pourra en donner une formule en fonction des coefficients de A pour montrer la positivité et la séparation.
- 4. Soit  $\mathscr{B}(\mathbb{N}^*)$  l'ensemble des suites bornées de  $\mathbb{R}^{\mathbb{N}^*}$ . Montrer que l'opérateur  $\langle \cdot, \cdot \rangle$  défini pour tout  $\left(u=\left(u_{n}\right)_{n\in\mathbb{N}^{*}},v=\left(v_{n}\right)_{n\in\mathbb{N}^{*}}\right)\in\left(\mathscr{B}\left(\mathbb{N}^{*}\right)\right)^{2}$ , par  $\langle u,v\rangle=\sum_{k=1}^{+\infty}\frac{u_{k}v_{k}}{k^{2}}$ existe et est un produit scalaire.

Exercice 2 Calculer sous forme factorisée les déterminants suivants :

$$\begin{array}{c|cccc}
1. & 0 & a & b \\
a & 0 & c \\
b & c & 0
\end{array}$$

$$\begin{array}{c|cccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}$$

3. 
$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$
4. 
$$\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix}$$

6. 
$$\begin{vmatrix} 1 & 1 & 1 \\ \cos a & \cos b & \cos c \\ \sin a & \sin b & \sin c \end{vmatrix}$$

Exercice 3 Pour 
$$n \in \mathbb{N}^*$$
, on définit  $\Delta_n = \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 1 & 1 \end{vmatrix}$ 

- 1. Trouver une relation de récurrence entre  $\Delta_n$ ,  $\Delta_{n-1}$  et  $\Delta_{n-2}$ .
- 2. En déduire la valeur de  $\Delta_n$

**Exercice 4** Soit E un  $\mathbb{K}$ -espace vectoriel de dimension n. Montrer que s'il existe  $f \in \mathcal{L}(E)$  tel que  $f^2 = -\mathrm{Id}_E$ , alors n est pair. Donner un exemple pour n = 2.

**Exercice 5** Déterminant de Vandermonde. Soient  $(a_0,\ldots,a_n)\in\mathbb{K}^{n+1}$  des scalaires

deux à deux distincts. On note  $V_n(a_0, \dots, a_n) = \begin{vmatrix} a_0 & a_1 & \cdots & \cdots & a_n \\ a_0^2 & a_1^2 & \cdots & \cdots & a_n^2 \\ \vdots & \vdots & & & \vdots \\ a_0^n & a_1^n & \cdots & \cdots & a_n^n \end{vmatrix}$ 

- 1. On pose  $P: x \mapsto V_n(x, a_1, \dots, a_n)$ . A l'aide d'un développement par rapport à la première colonne, montrer que P est un polynôme de degré inférieur ou égal à n.
- 2. Montrer que P admet n racines simples sur  $\mathbb{K}$ .
- 3. En déduire une relation entre  $V_n$  et  $V_{n-1}$ .
- 4. Montrer que  $V_n(a_0,\ldots,a_n)=\prod_{0\leqslant i< j\leqslant n}(a_j-a_i)$ . Peut -on étendre ce résultat au cas où deux au moins des  $a_i$  seraient égaux?

## Exercice 6

- 1. Donner le déterminant d'une matrice nilpotente i.e. une matrice  $N \in \mathcal{M}_n(\mathbb{K})$  tel qu'il existe  $p \in \mathbb{N}$ ,  $N^p = O_p$ .
- 2. Soit  $E = \{x \mapsto e^x P(x) \mid P \in \mathbb{R}_n[X] \}$ . Montrer que E est un  $\mathbb{R}$ -espace vectoriel de dimension n et donner le déterminant de la dérivation sur E.

Exercice 7 Calculer:  $\begin{vmatrix} a & c & a \\ b & a & c & a \\ a & c & a & b \\ c & a & b & a \end{vmatrix}.$ 

**Exercice 8** Les réels  $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$  étant fixés, on pose pour  $(a, b) \in \mathbb{R}^2$ ,

$$D_n(a,b) = \begin{vmatrix} \lambda_1 & a & \dots & a \\ b & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ b & \dots & b & \lambda_n \end{vmatrix} \text{ et } P(X) = \begin{vmatrix} \lambda_1 + X & a + X & \dots & a + X \\ b + X & \lambda_2 + X & \ddots & \vdots \\ \vdots & \ddots & \ddots & a + X \\ b + X & \dots & b + X & \lambda_n + X \end{vmatrix}.$$

- 1. A l'aide d'opérations sur les lignes et les colonnes, montrer que P est un polynôme de degré  $\leq 1$ .
- 2. Calculer  $D_n(a,b)$  si  $a \neq b$ .
- 3. Calculer  $D_n(a,a)$  (on admettra que  $D_n(a,a) = \lim_{b \to a} D_n(a,b)$ ).