

Question de cours.

1. Démontrer l'unicité de la limite.

Exercice 1. Soit
$$f: x \mapsto \begin{cases} \frac{1}{\sin(x)} - \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
 Etudier la régularité de f .

Exercice 2. Soit E un ensemble et $f: E \to \mathscr{P}(E)$.

- 1. Donner un exemple où f est injective.
- 2. On pose

$$A = \{ x \in E \mid x \notin f(x) \}.$$

Montrer que A n'admet pas d'antécédent. Que peut-on en déduire pour f?

Colle de mathématiques PTSI

2024-2025

Colle du 27/01 - Sujet 2 Ensembles et applications, continuité-dérivabilité

Question de cours.

- 1. Démontrer les deux assertions suivantes :
 - (a) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
 - (b) $f(A \cup B) = f(A) \cup f(B)$.

Exercice 1. Soit E un ensemble. Pour tout $(A, B) \in \mathscr{P}(E)^2$, on pose $A\Delta B$ l'ensemble des éléments dans A ou dans B mais pas dans les deux à la fois. Montrer que $A\Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

Exercice 2. (Théorème de Darboux) Soient a < b et $f : [a, b] \to \mathbb{R}$ une fonction dérivable. On veut montrer que f' vérifie la propriété du théorème des valeurs intermédiaires. On suppose f'(a) < f'(b), on fixe λ tel que $f'(a) < \lambda < f'(b)$ et on définit $\varphi : x \mapsto f(x) - \lambda x$.

- 1. Montrer qu'il existe $c \in [a; b[$ tel que $\varphi(c) = \min_{t \in [a:b]} \varphi(t)$.
- 2. Conclure.

Colle de mathématiques PTSI

2024 - 2025

Question de cours.

1. Démontrer que l'image d'un intervalle par une fonction continue est un intervalle.

Exercice 1. Soient I =]a; b[un intervalle de $\mathbb{R}, f \in \mathscr{C}(I, \mathbb{R})$ et $x_0 \in I$. Déterminer une condition nécessaire et suffisante pour que f soit non nulle sur tout un voisinage de x_0 .

Exercice 2. Soient E et F deux ensembles et $f: E \to F$. Montrer que f est surjective si et seulement si $\forall A \in \mathscr{P}(E)$, $\overline{f(A)} \subseteq f(\overline{A})$.