

Colle du 09/04 - Sujet 1 Espaces vectoriels et dénombrement

Question de cours

- 1. Donner le cardinal de l'ensemble des fonctions de E dans F.
- 2. Montrer que l'intersection de deux sous-espaces vectoriels est un espace vectoriel.

Exercice 1. Montrer que l'ensemble des suites réelles bornées est un espace vectoriel.

Exercice 2. Pour tout $n \in \mathbb{N}^*$, on note u_n le nombre d'involutions i.e. d'applications f de E = [1; n] dans [1; n] telles que $f \circ f = \mathrm{Id}_E$.

- 1. Montrer qu'une involution est bijective.
- 2. Déterminer le nombre de bijection de E dans E.
- 3. Calculer u_1, u_2, u_3 .
- 4. Montrer que pour tout $n \in \mathbb{N}^*$, $u_{n+2} = u_{n+1} + (n+1) u_n$.

Colle de mathématiques PCSI

2023-2024

Colle du 09/04 - Sujet 2 Espaces vectoriels et dénombrement

Question de cours

- 1. Caractériser le fait que F soit un sous-espace vectoriel de E.
- 2. Montrer que si pour tout $i \in [1; n]$, $e_i \in F$, alors $\text{Vect}(e_1, \dots, e_n) \subseteq F$.

Exercice 1. Pour tout $n \in \mathbb{N}^*$, on note A_n l'ensemble des listes (avec ordre et répétition) d'entiers naturels non nuls entre 1 et n. On note B_n l'ensemble des éléments de A_n dont la somme vaut n et enfin $b_n = \operatorname{Card}(B_n)$.

- 1. Calculer Card (A_n) .
- 2. Calculer Card (A_n) avec au moins deux 0.
- 3. Préciser b_1 , b_2 et b_3 .
- 4. Calculer le nombre d'éléments de B_n se terminant par 1.
- 5. En déduire une formule de récurrence pour la suite $(a_n)_{n\in\mathbb{N}^*}$ et conclure.

Exercice 2. Soit $A = X^3 + 12X - 5$ et $F = \{P \in \mathbb{R}[X] \mid A \text{ divise } P\}$. Montrer que F est un espace vectoriel et en déterminer un supplémentaire.

Colle du 09/04 - Sujet 3 Espaces vectoriels et dénombrement

Question de cours

- 1. Donner la formule donnant le cardinal de l'union.
- 2. Montrer que l'ensemble des combinaisons linéaires d'une famille de vecteurs est un sous-espace vectoriel.

Exercice 1. Soient $P_0 = 1$, $P_1 = X$, $P_2 = (X - 1)X(X + 1)$, $P_3 = X^2(X + 1)$ et $P_4 = (X - 1)X(X + 1)^2$. Montrer que $\mathcal{B} = (P_0, P_1, P_2, P_3, P_4)$ est une base de $\mathbb{R}_4[X]$.

Exercice 2. Soient $n \in \mathbb{N}^*$ et E un ensemble de cardinal n.

- 1. Calculer de deux façons le nombre de couples $(A, B) \in \mathscr{P}(E)^2$ tels que $A \subseteq B$.
- 2. En déduire le nombre de couples $(A,B) \in \mathscr{P}(E)^2$ tels que $A \cap B = \emptyset$.