

Colle du 17/03 - Sujet 1 Espaces vectoriels et séries

Question de cours. Montrer que la somme de sous-espaces vectoriels est un espace vectoriel.

Exercice 1. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{\sqrt{k}}$ et pour tout $n \geqslant 2$, $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

- 1. Montrer que $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- 2. Montrer que $\sum_{n\geqslant 2} u_n$ diverge.

Exercice 2. Soient $F = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid M^T + M \in \mathcal{D}_2(\mathbb{R}) \}.$

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer une base puis un supplémentaire de F dans $\mathcal{M}_2(\mathbb{R})$.

Colle de mathématiques PTSI

2024-2025

Colle du 17/03 - Sujet 2 Espaces vectoriels et séries

Question de cours. Enoncer et démontrer la caractérisation de deux espaces vectoriels en somme directe par l'intersection.

Exercice 1. Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on pose $F = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid AM = 0_n \}$.

- 1. Montrer que F est un espace vectoriel.
- 2. On suppose désormais que $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Déterminer une base de F.
- 3. Déterminer un supplémentaire de F.

Exercice 2. Déterminer la nature de $\sum_{n \in \mathbb{N}^*} \frac{\ln (n(n+3))}{n(n+3)}$.

Colle de mathématiques PTSI

2024-2025

Colle du 17/03 - Sujet 3 Espaces vectoriels et séries

Question de cours. Démontrer le théorème d'encadrement série-intégrale.

Exercice 1. Déterminer la nature de la série de terme général $\sqrt[n]{n+1} - \sqrt[n]{n}$.

Exercice 2. Montrer que $F = \{ u = (u_n)_{n \in \mathbb{N}} \mid u_3 = 0 \}$ est un espace vectoriel et déterminer un supplémentaire de F.