

Colle du 31/03 - Sujet 1 Dimension et séries

Question de cours. Démontrer le théorème de comparaison.

Exercice 1. Déterminer la nature et calculer $\sum_{n\in\mathbb{N}} \frac{n}{(n+1)!}$

Exercice 2. Soient $n \in \mathbb{N}$, $n \ge 2$, $E = \mathbb{R}_n[X]$ et $F = \{P \in E \mid P(1) = P(2) = 0\}$.

- 1. Montrer que F est un espace vectoriel.
- 2. Déterminer la dimension de F puis un supplémentaire de F dans E.

Colle de mathématiques PTSI

2024-2025

Colle du 31/03 - Sujet 2 Dimension et séries

Question de cours. Démontrer l'existence d'un supplémentaire en dimension finie.

Exercice 1. Déterminer la nature de $\sum_{n \in \mathbb{N}^*} \frac{\arctan\left(\frac{1}{n^2}\right)}{\ln\left(1 + \frac{1}{n}\right)}$.

Exercice 2. Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et soit H un hyperplan de E i.e. un sous-espace vectoriel de E de dimension n-1.

- 1. Montrer qu'il existe $a \in E \setminus H$.
- 2. Montrer que $E = H \oplus \text{Vect}(a)$.
- 3. Montrer qu'il existe une base de E qui ne contienne aucun vecteur ni de H ni de $a\mathbb{R}$.

Colle de mathématiques PTSI

2024-2025

Colle du 31/03 - Sujet 3 Dimension et séries

Question de cours. Démontrer la caractérisation de la somme directe par la base adaptée.

Exercice 1. Soit
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -1 & -1 \\ 4 & -1 & 3 \\ 1 & 5 & -1 \end{pmatrix}$$
 et $G = \{AX \mid X \in \mathbb{R}^3\}$.

- 1. Montrer que G est un espace vectoriel.
- 2. Déterminer sa dimension.
- 3. Déterminer un supplémentaire de G.

Exercice 2. Soit $\alpha \in \mathbb{R}$. Déterminer la nature de la série de terme général $u_n = \ln\left(1 + \frac{1}{n}\right) + \alpha \sin\left(\frac{1}{n}\right)$.