

Colle du 06/11 - Sujet 1 Trigonométrie, complexes, calcul algébrique

Question de cours

- 1. Linéariser $\sin(a)\sin(b)$.
- 2. Démontrer que une inégalité sur $|\sin(t)|$.

Exercice 1. Calculer $\sin\left(\frac{\pi}{5}\right)$.

Exercice 2. Soit
$$(E): z^3 - (2+2i)z^2 + (-2+9i)z + 7 + i = 0.$$

- 1. Déterminer toutes les solutions dans $i\mathbb{R}$ de (E).
- 2. En déduire l'ensemble des solutions dans \mathbb{C} de (E).

Colle de mathématiques PCSI

2023-2024

Colle du 06/11 - Sujet 2 Trigonométrie, complexes, calcul algébrique

Question de cours

- 1. Par quelle transformation géométrique obtient-on le conjugué d'un complexe?
- 2. Démontrer la formule d'Euler.

Exercice 1. Résoudre $(z+i)^n = (z-i)^n$ d'inconnu $z \in \mathbb{C}$.

Exercice 2. Soit $x \in \mathbb{R}$.

- 1. Linéariser $\cos^4(x)\sin^2(x)$.
- 2. Développer $\sin(5x)$ et $\tan(4x)$

Colle de mathématiques PCSI

2023-2024

Question de cours

- 1. Donner la somme des premiers entiers et des premiers carrés.
- 2. Montrer que $a^n b^n = \dots$

Exercice 1. Soit
$$n \in \mathbb{N}$$
. Calculer $C_n = \sum_{k=0}^n \cos(a+kb)$.

Exercice 2. Soit
$$n \in \mathbb{N}$$
 et $S_n = \sum_{k=0}^n \binom{2n+1}{k}$ et $T_n = \sum_{k=0}^n \binom{2n+1}{n+k+1}$.

- 1. Montrer que $S_n = T_n$.
- 2. Calculer $S_n + T_n$.
- 3. En déduire S_n et T_n .