

Colle du 16/10 - Sujet 1 Complexes et calcul algébrique

Question de cours. Démonstration de $|z+z'|^2 = \dots$ et de l'inégalité triangulaire supérieure.

Exercice 1. En remarquant que 4 = 7 - 3 et en utilisant la formule du binôme de Newton, montrer que 7 divise $2^{4n+2} + 3^{2n+1}$.

Exercice 2. Soit $\mathscr C$ le cercle de centre O de rayon $r \in \mathbb R_+^*$. On fixe A(a) et B(b) deux points distincts du plan complexe appartenant à $\mathscr C$. Soit M(m) un point quelconque du plan différent de A et de B. On pose $z = \frac{m-b}{m-a}$. On introduit également les notations suivantes :

$$\alpha = \arg(a), \qquad \beta = \arg(b) \qquad \text{et} \qquad t = \arg(m).$$

1. On suppose $M \in \mathscr{C}$. Montrer alors que

$$z = e^{i\frac{\beta - \alpha}{2}} \frac{\sin\left(\frac{\beta - t}{2}\right)}{\sin\left(\frac{\alpha - t}{2}\right)}.$$

2. En déduire que $2\left(\overrightarrow{MA}, \overrightarrow{MB}\right) \equiv \left(\overrightarrow{OA}, \overrightarrow{OB}\right) [2\pi].$

Colle de mathématiques PTSI

2024-2025

Colle du 16/10 - Sujet 2 Complexes et calcul algébrique

Question de cours. Démontrer la somme des premiers carrés à l'aide de la somme des premiers entiers.

Exercice 1. Soit $n \in \mathbb{N}$. Démontrer que pour tout $z \in \mathbb{C}$, $z \notin \mathbb{U}$, on a

$$\left|\frac{1-z^{n+1}}{1-z}\right|\leqslant \frac{1-\left|z\right|^{n+1}}{1-\left|z\right|}.$$

Exercice 2. Soit $n \in \mathbb{N}$, calcular $\sum_{k=0}^{n} \binom{2n}{k} \binom{2n-k}{n-k}$.