

Colle du 13/11 - Sujet 1 Fonctions usuelles et équations complexes

Question de cours. Enoncer et démontrer la relation entre $\arctan(x)$ et $\arctan\left(\frac{1}{x}\right)$ sur \mathbb{R}_{+}^{*} .

Exercice 1. Résoudre dans \mathbb{C} l'équation $(2z+1)^4 = (z+1)^4$.

Exercice 2. Etudier la fonction $f: x \mapsto \arcsin(3x - 4x^3)$.

Colle de mathématiques PTSI

2024-2025

Colle du 13/11 - Sujet 2 Fonctions usuelles et équations complexes

Question de cours. Démonstration de l'écriture polaire des racines n-ièmes de l'unité.

Exercice 1. Résoudre dans \mathbb{C} l'équation $z^4 + (3-6i)z^2 - 2(4+3i) = 0$.

Exercice 2. Résoudre l'équation $\arcsin(x) = \arcsin\left(\frac{2}{5}\right) + \arcsin\left(\frac{3}{5}\right)$.

Colle de mathématiques PTSI

2024-2025

Colle du 13/11 - Sujet 3 Fonctions usuelles et équations complexes

Question de cours. Justifier la dérivabilité de la fonction arcsin et calculer sa dérivée.

Exercice 1. Résoudre dans \mathbb{R} l'équation $2 \operatorname{sh}(x) + \operatorname{ch}(x) = 3$.

Exercice 2. Soient $\omega = e^{i\frac{2\pi}{5}}$ et $Z = \omega + \omega^{-1}$.

- 1. Préciser $1 + \omega + \omega^2 + \omega^3 + \omega^4$.
- 2. Déterminer une équation vérifiée par \mathbb{Z} .
- 3. En déduire $\cos\left(\frac{2\pi}{5}\right)$, $\sin\left(\frac{2\pi}{5}\right)$ et $\tan\left(\frac{2\pi}{5}\right)$.