

Programme de colles 04 Fonctions usuelles et équations complexes

Quinzaine du 12 au 22 novembre

Fonctions usuelles

- 1. Le logarithme népérien (comme étant la fonction $x\mapsto \int_1^x \frac{1}{t}\,\mathrm{d}t$). Continuité, dérivation, monotonie. Propriétés algébriques. Limite aux bornes, graphe, $\ln{(1+x)}\leqslant x$ et $\lim_{x\to 0}\frac{\ln{(1+x)}}{x}$.
- 2. La fonction exponentielle (comme réciproque de la fonction logarithme). Continuité, dérivation, propriétés algébriques, graphes, limites aux bornes, $e^x \ge 1 + x$ et $\lim_{x \to 0} \frac{e^x 1}{x}$.
- 3. Les fonctions exponentielle et logarithme en base a.
- 4. Les fonctions puissances, dérivation, propriétés algébriques.
- 5. Croissances comparées : $\lim_{x \to +\infty} x^a \ln^b(x)$, $\lim_{x \to +\infty} \frac{\mathrm{e}^{bx}}{x^a}$, $\lim_{x \to 0, x > 0} x^a \left| \ln(x) \right|^b$, $\lim_{x \to -\infty} \left| x \right|^a \mathrm{e}^{-x}$.
- 6. Les fonctions hyperboliques, définition, dérivée, parité, monotonie, tangente en 0, graphe, $\operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$. Limites aux bornes, $\lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{x}$, $\lim_{x \to +\infty} \frac{\operatorname{sh}(x)}{x}$, $\lim_{x \to 0} \frac{\operatorname{ch}(x) 1}{x^2}$, $\lim_{x \to 0} \frac{\operatorname{sh}(x)}{x}$.
- 7. Les fonctions circulaires réciproques : arcsinus, arccosinus, arctan, définition, parité (ou non), dérivation, limites aux bornes, asymptotes, tangentes en 0, graphes.

Equations et géométrie complexes

- 8. Exponentielle complexe, propriétés.
- 9. Racines carrées d'un complexe, existence d'exactement deux racines pour tout complexe non nul. Détermination directe par la forme polaire et/ou par le calcul sous la forme algébrique.
- 10. Equations complexes du second degré. Discriminant complexe et expression des racines. Relations racines-coefficients : $s = z_1 + z_2 = -b/a$ et $p = z_1 z_2 = c/a$.
- 11. Racines n-ièmes de l'unité. Stabilité par produit et inverse/conjugué. Expression des racines n-ièmes. Somme des racines et factorisation de $z^n 1$.
- 12. Racines n-ièmes d'un complexe z. Expression à partir de la forme polaire de z. Détermination des racines n-ièmes de z à partir d'une.
- 13. Caractérisation par les affixes de la colinéarité/alignement, de l'orthogonalité.
- 14. Translation, rotation, homothétie. Définitions géométriques et applications complexes associées.

Questions de cours

- 1. Justifier la dérivabilité de la fonction arcsin et calculer sa dérivée.
- 2. Enoncer et démontrer la relation entre $\arctan(x)$ et $\arctan(\frac{1}{x})$ sur \mathbb{R}_+^* .
- 3. Démonstration de l'écriture polaire des racines n-ièmes de l'unité.

Démonstrations de cours

Proposition (démo 1)

La fonction arcsin est dérivable sur]-1;1[et

$$\forall x \in]-1; 1[, \quad \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$

Démonstration. Soit $f: \begin{bmatrix} -\frac{\pi}{2}; \frac{\pi}{2} \begin{bmatrix} \rightarrow \\ x \mapsto \sin(x) \end{bmatrix} = 1; 1[$ la restriction de la fonction sinus sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ dans]-1; 1[. La fonction f est bien définie car la fonction sinus est bien définie sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ et sin $(]-\frac{\pi}{2}; \frac{\pi}{2}[) =]-1; 1[$. On observe alors les points suivants :

- La fonction f est strictement croissante sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ car la fonction sinus l'est.
- La fonction f est dérivable sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ car la fonction sinus l'est.
- Pour tout $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$,

$$f'(x) = \sin'(x) = \cos(x) \neq 0.$$

Donc par le théorème de la dérivabilité de la réciproque, la fonction arcsin est dérivable sur]-1;1[. Soit $x \in]-1;1[$, on a

$$\arcsin'(x) = \frac{1}{f' \circ \arcsin(x)} = \frac{1}{\cos(\arcsin(x))}.$$

Or,

$$\cos^2(\arcsin(x)) = 1 - \sin^2(\arcsin(x)) = 1 - x^2.$$

Et puisque $\arcsin(x) \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \cos(\arcsin(x)) > 0.$ Ainsi,

$$\cos(\arcsin(x)) = +\sqrt{1-x^2}.$$

Conclusion,

la fonction arcsin est dérivable sur]-1;1[et pour tout $x \in$]-1;1[, $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$.

Proposition (démo 2)

Pour tout $x \in \mathbb{R}_+^*$,

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}.$$

Démonstration. Posons $g: \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \arctan(x) + \arctan\left(\frac{1}{x}\right) \end{array}$. La fonction $x \mapsto \frac{1}{x}$ est bien définie et même dérivable sur \mathbb{R}_+^* et la fonction arctangente l'est sur \mathbb{R} donc la fonction g est bien définie et même dérivable sur \mathbb{R}_+^* . De plus, pour tout $x \in \mathbb{R}_+^*$, on a

$$g'(x) = \frac{1}{1+x^2} + \left(\frac{1}{x}\right)' \times \frac{1}{1+\left(\frac{1}{x}\right)^2} = \frac{1}{1+x^2} + \frac{-1}{x^2} \times \frac{1}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} - \frac{1}{x^2+1} = 0.$$

Dès lors, puisque \mathbb{R}_+^* est un intervalle,

$$\exists C \in \mathbb{R}, \ \forall x \in \mathbb{R}_+^*, \qquad g(x) = C.$$

En particulier,

$$g(1) = \arctan(1) + \arctan\left(\frac{1}{1}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} = C.$$

Conclusion,

$$\forall x \in \mathbb{R}_+^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}.$$

Rappel, par imparité, on a aussi :

$$\forall x \in \mathbb{R}_{-}^{*}, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}.$$

Proposition (démo 3)

Soit $n \in \mathbb{N}^*$, l'ensemble des racines n-ièmes de l'unité est donné par :

$$\mathbb{U}_n = \left\{ e^{i\frac{2k\pi}{n}} \mid k \in [0; n-1] \right\}.$$

Démonstration. Soit $n \in \mathbb{N}^*$ et $\omega \in \mathbb{C}$. Observons que $0^n = 0 \neq 1$ donc $0 \notin \mathbb{U}_n$. Fixons donc $\omega \in \mathbb{C}^*$. Alors, il existe $(r, \theta) \in \mathbb{R}_+^* \times [0; 2\pi[$ tel que $\omega = r e^{i\theta}$. On a les équivalences suivantes :

$$\omega \in \mathbb{U}_{n} \qquad \Leftrightarrow \qquad \omega^{n} = \left(r \operatorname{e}^{i \, \theta}\right)^{n} = 1$$

$$\Leftrightarrow \qquad r^{n} \operatorname{e}^{i n \, \theta} = 1 = 1 \times \operatorname{e}^{i 0}$$

$$\Leftrightarrow \qquad \begin{cases} r^{n} = 1 \\ \exists k \in \mathbb{Z}, \ n \, \theta = 2k\pi \end{cases} \qquad \text{par la pseudo-unicit\'e de la forme trigonom\'etrique}$$

$$\Leftrightarrow \qquad \begin{cases} r = 1 \\ \exists k \in \mathbb{Z}, \ \theta = \frac{2k\pi}{n}. \end{cases} \qquad \text{car l\'equation } x^{n} = 1 \text{ n\'admet qu\'une seule solution dans } \mathbb{R}_{+}$$

Or, par construction, $\theta \in [0; 2\pi[$ et de plus pour $k \in \mathbb{Z}$, on a

$$0 \leqslant \frac{2k\pi}{n} < 2\pi \qquad \Leftrightarrow \qquad 0 \leqslant k < n \qquad \Leftrightarrow \qquad 0 \leqslant k \leqslant n-1 \qquad \qquad car \ (k,n) \in \mathbb{Z}^2.$$

Ainsi,

$$\omega \in \mathbb{U}_n \qquad \Leftrightarrow \qquad \begin{cases} r = 1 \\ \exists k \in [0; n-1], \ \theta = \frac{2k\pi}{n} \end{cases} \qquad \Leftrightarrow \qquad \exists k \in [0; n-1], \ \omega = \mathrm{e}^{i\frac{2k\pi}{n}} \ .$$

Conclusion,

$$\mathbb{U}_n = \left\{ e^{i\frac{2k\pi}{n}} \mid k \in \llbracket 0; n-1 \rrbracket \right\}.$$