

Programme de colles 06 Equations différentielles d'ordre 2, calculs dans $\mathbb R$

Quinzaine du 11 au 22 décembre

Equations différentielles linéaires d'ordre 2 à coefficients constants

- 1. Equations différentielles d'ordre 2 à coefficients constants ay'' + by' + cy = d(x), équation homogène associée.
- 2. Stabilité de l'ensemble des solutions de l'équation homogène par combinaisons linéaires.
- 3. Equation caractéristique associée.
- 4. Ensemble des solutions complexes de l'équation homogène.
- 5. Ensemble des solution réelles de l'équation homogène.
- 6. Structure de l'ensemble des solutions de l'équation non homogène $\mathscr{S}=y_p+\mathscr{S}_0$, avec y_p une solution.
- 7. Principe de superposition.
- 8. Recherche de la solution particulière lorsque le second membre est du type P(x) e^{mx} où P(x) est un polynôme, ou lorsque le second membre est trigonométrique.
- 9. Problème de Cauchy. Unicité et existence de la solution (admis).

Calcul dans \mathbb{R}

- 1. Définition des ensembles de base \mathbb{N} , \mathbb{Z} , \mathbb{D} , \mathbb{Q} , \mathbb{R} .
- 2. Propriétés élémentaires de la relation d'ordre ≤ compatibilité avec +, ×, le passage à l'inverse, le carré.
- 3. Définition du majorant, minorant, partie majorée, minorée, bornée.
- 4. Définition du maximum, minimum, borne supérieure, borne inférieure.
- 5. Théorème (admis) : toute partie non vide et majorée admet une borne supérieure. Caractérisation de la borne supérieure. De même pour la borne inférieure. Pas d'exercice trop théorique!
- 6. Définition d'un intervalle et classification des intervalles.
- 7. Propriété d'Archimède, définition de la partie entière, graphe et propriétés élémentaires.
- 8. Valeur absolue, graphe et propriétés élémentaires.
- 9. Distance entre deux réels, inégalité triangulaire.
- 10. Résolutions d'équations, d'inéquations avec valeur absolue et/ou racine carrée.
- 11. Résolution de systèmes linéaires (aucun exo avec paramètre n'a été traité en classe) par la méthode du pivot de Gauss.

Questions de cours

- 1. Démonstration d'un lemme sur l'ensemble des solutions complexes d'une équation différentielle homogène d'ordre 2 (méthode d'abaissement du degré dans le cas constant et homogène).
- 2. Montrer que toute partie non vide et minorée de $\mathbb Z$ admet un minimum.
- 3. Déterminer l'ensemble des intervalles non vides, non réduits à un singleton et bornés de R.

Démonstrations de cours

Démo 1 (abaissement du degré dans le cas constant)

Démonstration. Soient $(a, b, c) \in \mathbb{C}^3$, $a \neq 0$ et

$$(E_0) \forall t \in \mathbb{R}, ay''(t) + by'(t) + cy(t) = 0.$$

On note \mathcal{S}_0 l'ensemble des solutions de (E_0) . Soient

- (E_c) : $ar^2 + br + c = 0$ l'équation caractéristique associée à (E),
- r une solution/racine de (E_c)
- $y_0: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \mathrm{e}^{rt} \end{array}$
- y une fonction deux fois dérivable sur \mathbb{R}
- $\lambda: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \frac{y(t)}{y_0(t)} \end{array}$

On sait/admet/vérifie que $y_0 \in \mathscr{S}_0$. La fonction λ bien définie car $\forall t \in \mathbb{R}, y_0(t) = e^{rt} \neq 0$ et est même deux fois dérivable sur \mathbb{R} . Montrons que

y est solution de (E_0) \Leftrightarrow λ' est solution d'une équation différentielle d'ordre 1.

Puisque pour tout $t \in \mathbb{R}$, $y(t) = \lambda(t)y_0(t)$, on a

$$\forall t \in \mathbb{R}, \qquad y'(t) = \lambda'(t)y_0(t) + \lambda(t)y_0'(t) \qquad \text{et} \qquad y''(t) = \lambda''(t)y_0(t) + 2\lambda'(t)y_0'(t) + \lambda(t)y_0''(t)$$

On a alors les équivalences suivantes

$$y \in \mathscr{S}_{0} \qquad \Leftrightarrow \qquad \forall t \in \mathbb{R}, \ ay''(t) + by'(t) + cy(t) = 0$$

$$\Leftrightarrow \qquad \forall t \in \mathbb{R}, \ a\lambda''(t)y_{0}(t) + 2a\lambda'(t)y_{0}'(t) + a\lambda(t)y_{0}''(t) + b\lambda'(t)y_{0}(t) + b\lambda(t)y_{0}'(t) + c\lambda(t)y_{0}(t) = 0$$

$$\Leftrightarrow \qquad \forall t \in \mathbb{R}, \ a\lambda''(t)y_{0}(t) + (2ay_{0}'(t) + by_{0}(t))\lambda'(t) + \lambda(t)(ay_{0}''(t) + by_{0}'(t) + cy_{0}(t)) = 0$$

$$\Leftrightarrow \qquad \forall t \in \mathbb{R}, \ a\lambda''(t) e^{rt} + (2ar e^{rt} + b e^{rt})\lambda'(t) + 0 = 0 \qquad car \ y_{0} \in \mathscr{S}_{0}$$

$$\Leftrightarrow \qquad \forall t \in \mathbb{R}, \ a\lambda''(t) + (2ar + b)\lambda'(t) = 0 \qquad car \ e^{rt} \neq 0.$$

Conclusion, y est solution de (E_0) si et seulement si λ' est solution de l'équation

$$(F) \forall t \in \mathbb{R}, \ z'(t) + \left(2r + \frac{b}{a}\right)z(t) = 0.$$

Proposition (démo 2)

Toute partie non vide et minorée de \mathbb{Z} admet un minimum.

Démonstration. Soit A une partie non vide de \mathbb{Z} possédant un minorant : il existe $n_0 \in \mathbb{Z}$ tel que

$$\forall a \in A, \quad n_0 \leqslant a.$$

Par contraposée on observe que pour tout $n < n_0$, on a $n \notin A$.

Procédons par l'absurde et supposons que A n'admet aucun minimum.

Posons pour tout $n \in \mathbb{Z}$, $n \geqslant n_0$, $\mathscr{P}(n)$: « $n \notin A$ ». Montrons par récurrence forte que pour tout $n \geqslant n_0$, $\mathscr{P}(n)$ est vraie.

Initialisation. Si $n = n_0$. Par hypothèse, n_0 est un minorant de A et A n'admet pas de minimum. Donc $n_0 \notin A$ et $\mathscr{P}(n_0)$ est vraie.

Hérédité. Soit $n \ge n_0$. Supposons que pour tout $k \in [n_0; n]$, $\mathscr{P}(k)$ est vraie. Montrons que $\mathscr{P}(n+1)$ est aussi vraie. On a vu que pour tout $k < n_0$, $k \notin A$ et par hypothèse de récurrence pour tout $k \in [n_0; n]$, $k \notin A$. Donc pour tout $k \in n$, $k \notin A$. Autrement dit pour tout $k \in A$, on a k > n ou encore $k \ge n+1$. Donc n+1 est un minorant de A. Or A n'admet pas de minimum donc $n+1 \notin A$. Ainsi $\mathscr{P}(n+1)$ est vraie.

Conclusion, pour tout $n \ge n_0$, $\mathscr{P}(n)$ est vraie i.e. $n \notin A$. Or on a vu aussi que pour tout $n < n_0$, $n \notin A$. Donc pour tout $n \in \mathbb{Z}$, $n \notin A$ et A est donc vide ce qui est contradictoire. Conclusion, toute partie non vide minorée de \mathbb{Z} admet un minimum.

Proposition (démo 3)

Soit I un intervalle de \mathbb{R} non vide, borné, non réduit à un singleton. Alors, il existe $(a,b) \in \mathbb{R}^2$, tel que

$$]a;b[\subseteq I\subseteq [a;b].$$

Démonstration. Puisque I est borné, alors I est minoré. De plus I est non vide. Donc $a = \inf I$ existe. De même I est majoré et non vide donc $b = \sup I$ existe. Montrons que $[a;b] \subseteq I \subseteq [a;b]$.

Montrons que $]a;b[\subseteq I.$ Soit $x\in]a;b[.$ Alors, x>a. Or a en tant que borne inférieure est le plus grand des minorants. Donc x n'est pas un minorant de I i.e.

$$\exists \alpha \in I, \quad \alpha < x.$$

De même, x < b et b en tant que borne supérieure est le plus petit des majorants. Donc x n'est pas un majorant de I:

$$\exists \beta \in I, \quad x < \beta.$$

Ainsi, on a

$$\begin{cases} \alpha < x < \beta \\ (\alpha, \beta) \in I^2 \end{cases} \Rightarrow x \in I.$$
 I est un intervalle de $\mathbb R$

Ceci étant vrai pour tout $x \in]a; b[$, on en déduit que $[a; b] \subseteq I$.

D'autre part, montrons que $I \subseteq [a;b]$. Soit $x \in I$. Puisque $a = \inf I$, alors a est un minorant de I et donc $a \leqslant x$. De même $b = \sup I$ est un majorant de I donc $x \leqslant b$. Ainsi $a \leqslant x \leqslant b$ i.e. $x \in [a;b]$. Ceci étant vrai pour tout $x \in I$, on en déduit que $I \subseteq [a;b]$. D'où,

$$|a;b| \subseteq I \subseteq [a;b]$$
.

Dès lors, on observe les cas suivants (ne pas hésiter à finir à l'oral) :

- si $a \notin I$ et $b \notin I$, alors I = [a; b[.
- si $a \notin I$ et $b \in I$, alors I = [a; b].
- si $a \in I$ et $b \notin I$, alors I = [a; b[.
- si $a \in I$ et $b \in I$, alors I = [a; b].