

Devoir Maison 5 équations différentielles, matrices, analyse asymptotique

A faire pour le jeudi 09 janvier

Problème I - Equations différentielles d'ordre 2

Partie 1: Zigzaguons un zeste parmi ces zouaves de z

On considère l'équation différentielle suivante d'inconnue z une fonction deux fois dérivable sur \mathbb{R} .

(F)
$$\forall t \in \mathbb{R}, \quad z''(t) - 2z'(t) + z(t) = t^2 + 3.$$

- 1. Résoudre (F_0) l'équation homogène associée à (F).
- 2. En déduire l'ensemble des solutions de (F).

Partie 2 : Transformer y en φ n'est pas faire fi du problème mais bien le simplifier

On considère l'équation suivante d'inconnue y une fonction deux fois dérivable sur \mathbb{R}_+^* :

(G)
$$\forall x \in \mathbb{R}_{+}^{*}, \quad x^{2}y''(x) - xy'(x) + y(x) = 0.$$

- 3. Soit y une fonction deux fois dérivable sur \mathbb{R}_+^* . On pose $\psi: \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \frac{y(x)}{x} \end{array}$ puis $\varphi = \psi'$.
 - (a) Justifier que φ existe et est même dérivable sur \mathbb{R}_+^* et montrer que

y est solution de (G) \Leftrightarrow φ est solution d'une équation différentielle d'ordre 1.

- (b) En déduire l'ensemble des solutions de (G).
- 4. Soit y une fonction deux fois dérivable sur \mathbb{R}_{+}^{*} . On pose pour tout $t \in \mathbb{R}$, $z(t) = y(e^{t})$.
 - (a) Justifier que z est deux fois dérivable et montrer que y est solution de (G) si et seulement si z est solution d'une équation différentielle que l'on déterminera.
 - (b) En déduire à nouveau l'ensemble des solutions de (G).

Partie 3 : Kèskecékeça? Une équation fonctionnelle? ça mord pas au moins?

On considère l'équation fonctionnelle suivante d'inconnue f une fonction dérivable sur \mathbb{R}_+^* :

(H)
$$\forall x \in \mathbb{R}_+^*, \qquad f'(x) = xf\left(\frac{1}{x}\right).$$

- 5. Montrer que si f est une solution de (H) alors f est une solution de (G).
- 6. Résoudre (H).

Problème II - Matrices

Dans ce problème, on considère la matrice A suivante :

$$A = \begin{pmatrix} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{pmatrix}.$$

L'objectif de ce problème est de calculer les puissances de la matrice A de plusieurs façons différentes.

Partie 1 : Newton ouvre le jeu en travaillant en binôme

On considère

$$J = \frac{1}{4} \left(A + 3I_3 \right)$$

- 1. Calculer J^2 .
- 2. En déduire J^k pour tout $k \in \mathbb{N}$.
- 3. Montrer que:

$$(\bigstar)$$
 $\forall n \in \mathbb{N}, \quad A^n = (-3)^n I_3 + (1 - (-3)^n) J$

- 4. En déduire A^n en fonction de ses coefficients pour tout $n \in \mathbb{N}$.
- 5. Montrer que la formule (\bigstar) reste valable pour n=-1.
- 6. Montrer que la formule (\bigstar) reste valable pour tout $n \in \mathbb{Z}$.

Partie 2 : Euclide reprend l'avantage en divisant l'équipe adverse

- 7. Calculer $A^2 + 2A$, puis en déduire un polynôme annulateur P(X) de la matrice A de degré 2.
- 8. En déduire à nouveau que A est inversible et que son inverse est un polynôme en A.
- 9. Déterminer le reste de la division euclidienne de X^n par P(X) pour tout $n \in \mathbb{N}$.
- 10. En déduire A^n en fonction de ses coefficients pour tout $n \in \mathbb{N}$.

Partie 3 : Gauss se pose en pivot du match

Soient $\lambda \in \mathbb{R}$ et (S_{λ}) l'équation suivante d'inconnue $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$:

$$(S_{\lambda}): (\lambda I_3 - A) X = 0_{\mathbb{R}^3}.$$

On note \mathcal{S}_{λ} l'ensemble des solutions de (\mathcal{S}_{λ}) .

- 11. Déterminer suivant les valeurs de λ , l'ensemble \mathscr{S}_{λ} .
- 12. On note λ_1 et λ_2 , $\lambda_1 < \lambda_2$ les deux réels pour lesquels $\mathscr{S}_{\lambda} \neq \{0_{\mathbb{R}^3}\}$. Vérifier que $\lambda_1 + 2\lambda_2 = \operatorname{Tr}(A)$.
- 13. On pose $e_1 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ et $e_3 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$. Pour tout $i \in [1;3]$, calculer Ae_i et en déduire que $e_i \in \mathscr{S}_{\lambda_1}$ ou $e_i \in \mathscr{S}_{\lambda_2}$.

Partie 4: Un but en diagonale conclut la rencontre

On considère la matrice P:

$$P = \begin{pmatrix} -2 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 & -1 \end{pmatrix}.$$

- 14. On admet dans cette question que P est inversible. Montrer, sans calculer P^{-1} , que $\text{Tr}(P^{-1}AP) = \text{Tr}(A)$.
- 15. Montrer que P est inversible et calculer P^{-1} .
- 16. Calculer $D = P^{-1}AP$. Préciser Tr (D), est-ce cohérent?
- 17. Exprimer A^n en fonction de P, P^{-1} et D^n pour tout $n \in \mathbb{N}$.
- 18. Le résultat précédent reste-t-il vrai pour $n = -1 \in \mathbb{Z}$?
- 19. En déduire A^n en fonction de ses coefficients pour tout $n \in \mathbb{N}$.

Exercice III - Analyse Asymptotique

- 1. Soit $f: x \mapsto \frac{\mathrm{e}^{-\cos(x)}-1}{x-\frac{\pi}{2}}$. A l'aide d'un développement limité à un ordre bien choisi,
 - (a) Montrer que la fonction f est prolongeable par continuité en $\frac{\pi}{2}$. On note encore f la fonction prolongée.
 - (b) Justifier que la fonction prolongée f est dérivable en $\frac{\pi}{2}$ et préciser $f'\left(\frac{\pi}{2}\right)$.
 - (c) Déterminer l'équation de la tangente de la fonction $f: x \mapsto \frac{e^{-\cos(x)} 1}{x \frac{\pi}{2}}$ ainsi que la position relative du graphe de f par rapport à cette tangente au voisinage de $\frac{\pi}{2}$.
- 2. Déterminer le comportement asymptotique de $g: x \mapsto \frac{x^2}{x-1} e^{\frac{1}{x}}$ et notamment la position relative de la courbe par rapport à son asymptote au voisinage de $+\infty$.

Problème IV - Analyse Asymptotique

1. Justifier que la fonction sh est bijective.

On note $\operatorname{argsh} = \operatorname{sh}^{-1}$ sa réciproque. L'objectif est de montrer l'existence d'un développement limité de argsh à l'ordre 5 en 0 et de le déterminer de différentes façons. Les parties sont indépendantes et, sauf mention contraire, on ne pourra pas utiliser les résultats de l'une pour répondre à une autre.

Partie 1: Faisons connaissance

- 2. Déterminer le domaine de continuité de argsh et dresser son tableau de variation.
- 3. Justifier que argsh admet un développement limité à l'ordre 0 et le déterminer.

Partie 2 : Un mariage avec sh réussi

On suppose dans cette partie que argsh admet un développement limité à l'ordre 5 en 0, noté

$$\operatorname{argsh}(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + o(x^5).$$

- 4. Sans calcul, montrer que $a_0 = a_2 = a_4 = 0$.
- 5. Rappeler le développement limité de sh à l'ordre 5 en 0. A l'aide de l'égalité $\operatorname{argsh}(\operatorname{sh}(x)) = x$, en déduire celui de argsh .

Partie 3: Parce que ch est jaloux

On suppose toujours que argsh admet un développement limité à l'ordre 5 en 0 et on admet qu'il est donné par

$$\operatorname{argsh}(x) = x + a_3 x^3 + a_5 x^5 + o(x^5),$$

avec a_3 et a_5 à déterminer.

- 6. Montrer que pour tout $x \in \mathbb{R}$, ch $(\operatorname{argsh}(x)) = \sqrt{1+x^2}$.
- 7. Préciser le développement limité à l'ordre 6 en 0 de $\sqrt{1+x^2}$
- 8. En déduire à nouveau le développement limité de argsh à l'ordre 5 en 0.

Partie 4 : En laissant couler (ou dériver quoi) les choses s'arrangent

- 9. Justifier que argsh est dérivable sur \mathbb{R} puis déterminer sa dérivée. On pourra utiliser le résultat de la question 6.
- 10. Sans le calculer, justifier que pour tout $n \in \mathbb{N}$, argsh admet un développement limité à l'ordre n en 0.
- 11. Pour tout $n \in \mathbb{N}$, déterminer le développement limité de argsh à l'ordre 2n+1 et préciser le cas, celui d'ordre 5.

Partie 5 : Finalement ce n'était qu'un logarithme qui ne s'assumait pas

- 12. Soit $y \in \mathbb{R}$. Résoudre l'équation $y = \operatorname{sh}(x)$ d'inconnue $x \in \mathbb{R}$.
- 13. Préciser alors une expression de argsh en fonction du logarithme et en déduire à nouveau un développement limité à l'ordre 5 en 0 de argsh.