

Devoir Maison 7 Continuité-dérivabilité, suites et polynômes

A faire pour le jeudi 13 février

Problème I - Continuité-dérivabilité

Partie 1 : Fifi à la classe

On définit

$$[-\pi; \pi[\rightarrow \mathbb{R}] \rightarrow \mathbb{R}$$

$$\varphi : \begin{cases} \cos(x) \\ \sin(x) \end{bmatrix} \arctan(x) & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$$

- 1. Montrer que φ est continue sur $]-\pi;\pi[$.
- 2. Préciser la parité de φ .
- 3. Montrer que pour tout $x \in]-\pi; \pi[\setminus \{0\}, \varphi'(x) = \frac{1}{\sin^2(x)} \left(\frac{\sin(2x)}{2(1+x^2)} \arctan(x)\right).$
- 4. En déduire un équivalent simple de $\varphi'(x)$ quand x tend vers 0, $x \neq 0$.
- 5. Montrer que φ est \mathscr{C}^1 et préciser l'équation de sa tangente en 0.
- 6. Tracer l'allure du graphe de φ sur $]-\pi;\pi[$.

Partie 2: Pour partir loin en un temps fini, il vaut mieux courir vite

Soit f une fonction dérivable sur $]-\pi;\pi[$ telle que $\lim_{x\to -\pi}f(x)=\lim_{x\to \pi}f(x)=-\infty$ et f(0)=1.

- 7. Montrer qu'il existe $(a,b) \in]-\pi; 0[\times]0; \pi[$, tel que $\forall x \in]-\pi; a] \cup [b; \pi[$, $f(x) \leq 0$.
- 8. Montrer que $[0;1] \subset f(]-\pi;\pi[)$.
- 9. Montrer que f admet un maximum sur $]-\pi;\pi[$.
- 10. On suppose que f' est bornée sur $[0; \pi[$: il existe $M \in \mathbb{R}_+$ tel que pour tout $x \in [0; \pi[$, $|f'(x)| \leq M$.
 - (a) Montrer que f est M-lipschitzienne sur $[0; \pi[$.
 - (b) Conclure à une contradiction, que peut-on en déduire?

Problème II - Suites numériques

On pose pour tout $x \in \mathbb{R}$,

$$f(x) = (x^2 + 1) e^{-x}$$
.

Partie 1 : Commençons par faire fonctionner la fonction

- 1. Déterminer le tableau de variation complet de f' puis celui de f.
- 2. Justifier que l'équation f(x) = 1 admet une unique solution sur \mathbb{R} puis la préciser.
- 3. (a) Démontrer que f admet un unique point fixe dans \mathbb{R} . On le notera ℓ .
 - (b) Vérifier que $\ell \in]1/2; 1[$.
- 4. Démontrer que f est $\frac{1}{4\sqrt{e}}$ -lipschitzienne sur [1/2; 1].
- 5. Déterminer le développement limité de f en 0 à l'ordre 2.

Partie 2: Passons à la suite, cela va sans dire

On définit pour tout $n \in \mathbb{N}$, $n \ge 2$ et tout $x \in \mathbb{R}$,

$$f_n(x) = (x^2 + 1) e^{-x} - 1 + \frac{1}{n}.$$

6. Justifier que pour tout $n \in \mathbb{N}$, $n \ge 2$, il existe $u_n \in \mathbb{R}$ tel que

$$f_n\left(u_n\right)=0.$$

- 7. (a) Justifier que pour tout $n \in \mathbb{N}$, $n \ge 2$, $u_n > 0$.
 - (b) Démontrer que $(u_n)_{n\geq 2}$ est strictement décroissante.
 - (c) Démontrer que $(u_n)_{n\geq 2}$ converge et déterminer sa limite.
- 8. (a) Justifier que pour tout $n \in \mathbb{N}$, $n \ge 2$,

$$-u_n + \ln\left(1 + u_n^2\right) = \ln\left(1 - \frac{1}{n}\right).$$

- (b) En déduire un équivalent simple de u_n puis de u_n^2 .
- (c) En déduire un développement limité à l'ordre $\frac{1}{n^2}$ de u_n .
- 9. Il est clair que f définie une bijection de \mathbb{R} dans \mathbb{R}_+^* par le théorème de la bijection et donc f^{-1} est une fonction bien définie sur \mathbb{R}_+^* . On pose $J = \mathbb{R}_+^* \setminus \{2e^{-1}\}$.
 - (a) Montrer que f^{-1} est dérivable sur J et donner une expression de $(f^{-1})'$ en fonction de f' et f^{-1} .
 - (b) Justifier que $(f^{-1})'$ est \mathscr{C}^1 sur J.
 - (c) En déduire que f^{-1} admet un développement limité d'ordre 2 en 1. On notera a_0 , a_1 et a_2 ses coefficients.
 - (d) A l'aide de la question 5., déterminer ce développement limité. On pourra poser u(x) = f(x) - 1 donner son développement limité et utiliser le fait que $x = f^{-1}(1 + u(x))$.
 - (e) Retrouver alors le développement limité à l'ordre 2 de u_n .

Partie 3: Pour terminer, récurez encore et encore

On définit la suite $(v_n)_{n\in\mathbb{N}}$ par récurrence par $v_0=1$ et pour tout $n\in\mathbb{N}$,

$$v_{n+1} = f\left(v_n\right).$$

- 10. Montrer que pour tout $n \in \mathbb{N}, v_n \in [1/2; 1]$.
- 11. Démontrer que pour tout $n \in \mathbb{N}$, $|v_{n+1} \ell| \leqslant \frac{1}{4\sqrt{e}} |v_n \ell|$.
- 12. En déduire que $(v_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- 13. Justifier que

$$v_n \underset{n \to +\infty}{=} \ell + O\left(\left(\frac{1}{4\sqrt{e}}\right)^n\right).$$

On pose pour tout $n \in \mathbb{N}$,

$$a_n = v_{2n} \qquad \text{et} \qquad b_n = v_{2n+1}.$$

- 14. Démontrer que si g est une fonction décroissante sur un intervalle I alors $h = g \circ g$ est croissante sur I.
- 15. (a) Justifier que la suite $(a_n)_{n\in\mathbb{N}}$ est monotone.
 - (b) Quelle est sa limite? En déduire sa monotonie.
 - (c) Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.

Partie 4 : Quand Taylor et Cesàro s'en mêlent (facultatif)

On admet dans la suite que pour tout $n \in \mathbb{N}$, $a_n > \ell$ et on pose pour tout $n \in \mathbb{N}$,

$$w_n = \ln (a_n - \ell)$$
.

On note également

$$\beta = (f \circ f)'(\ell).$$

- 16. Justifier que $\beta = f'(\ell)^2$ et que $\beta \in]0; 1[$.
- 17. A l'aide de la formule de Taylor, montrer que pour tout $n \in \mathbb{N}$,

$$a_{n+1} \underset{n \to +\infty}{=} \ell + \beta (a_n - \ell) + o (a_n - \ell).$$

18. En déduire proprement que

$$w_{n+1} \underset{n \to +\infty}{=} \ln (\beta) + w_n + o (1).$$

19. A l'aide du lemme de Cesàro appliqué à la suite $(w_{k+1} - w_k)_{k \in \mathbb{N}}$, montrer que

$$w_n \underset{n \to +\infty}{\sim} n \ln (\beta)$$
.

Exercice III - Polynômes et suites numériques

Soit $P \in \mathbb{C}[X]$ vérifiant

(E)
$$P(X^{2}-1) = P(X-1)P(X+1).$$

Partie 1 : Plantons des racines

- 1. Déterminer les polynômes constants solutions de (E).
- 2. Déterminer les polynômes de degré 1 solutions de (E).
- 3. On suppose pour toute la suite P non constant. On note $d = \deg(P)$. Quel théorème assure alors l'existence d'une racine de P dans \mathbb{C} ?

Soit $a \in \mathbb{C}$ une racine de P. On pose $u_0 = a$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n^2 + 2u_n$$
.

4. Montrer que pour tout $n \in \mathbb{N}$, u_n est une racine de P.

Partie 2 : Le coupable est un mono

On suppose dans cette partie que $a \in \mathbb{R}$ et on définit $f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto x^2 + 2x \end{cases}$.

- 5. Préciser le tableau de variation de f puis justifier que $u_1 \in [-1; +\infty[$.
- 6. On suppose $u_1 \in \mathbb{R}_+^*$.
 - (a) Montrer alors que la suite $(u_n)_{n\in\mathbb{N}^*}$ est strictement croissante.
 - (b) En déduire une contradiction à propos de P.
- 7. On suppose que $u_1 \in]-1;0[$.
 - (a) Déterminer le tableau de variation sur \mathbb{R} de $g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & f(x) x \end{array}$.
 - (b) En déduire la stricte monotonie, la convergence puis la limite de $(u_n)_{n\in\mathbb{N}^*}$.
 - (c) Retrouver la contradiction sur P.
- 8. Montrer que -1 n'est pas une racine de P. Que vaut u_1 ?
- 9. En déduire que l'unique racine réelle de P est 0.
- 10. On admet que P n'admet pas de racine dans $\mathbb{C} \setminus \mathbb{R}$ (cf partie suivante pour les volontaires). Conclure sur l'ensemble des solutions de (E).

Partie 3: Des racines imaginaires? C'est Yggdrasil? (facultatif)

Soit $a \in \mathbb{C} \setminus \mathbb{R}$.

11. Montrer que pour tout $n \in \mathbb{N}$, $u_n + 1 = (a+1)^{2^n}$.

On pose pour tout $n \in \mathbb{N}$, $r_n = |u_n + 1|$.

- 12. Montrer que $(r_n)_{n\in\mathbb{N}}$ est une sous-suite d'une suite géométrique dont on précisera la raison.
- 13. Discuter suivant les valeurs de |a+1| la monotonie de $(r_n)_{n\in\mathbb{N}}$.
- 14. En déduire que |a+1|=1.
- 15. On démontre de même que |a-1|=1, ce que l'on admet. A l'aide d'un schéma, en déduire une contradiction.