

Corrigé du DS9 - Concours blanc représentation matricielle, analyse

Problème I - Représentation matricielle

Partie 1 : Mise en place des matrices

On note j le complexe $j=e^{i\frac{2\pi}{3}}$. Dans le \mathbb{C} -espace vectoriel $\mathscr{F}(\mathbb{C},\mathbb{C})$, on définit les fonctions suivantes :

$$f_1: \begin{array}{cccc} \mathbb{C} & \to & \mathbb{C} \\ x & \mapsto & \mathrm{e}^x \end{array}, \qquad f_2: \begin{array}{cccc} \mathbb{C} & \to & \mathbb{C} \\ x & \mapsto & \mathrm{e}^{jx} \end{array}, \qquad f_3: \begin{array}{cccc} \mathbb{C} & \to & \mathbb{C} \\ x & \mapsto & \mathrm{e}^{j^2x} \end{array}.$$

On pose alors $\mathscr{C} = (f_1, f_2, f_3)$ et $E = \text{Vect}_{\mathbb{C}}(\mathscr{C})$. On note également

$$\tau: \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ x & \mapsto & jx \end{array}.$$

Enfin pour tout $f \in E$, on pose $T(f) = f \circ \tau$.

1. (a) Soient $(x_1, x_2, x_3) \in \mathbb{C}^3$ tel que $x_1 f_1 + x_2 f_2 + x_3 f_3 = 0_{\mathscr{F}(\mathbb{C}, \mathbb{C})}$. Posons g la restriction de la fonction $x_1 f_1 + x_2 f_2 + x_3 f_3$ aux réels : pour tout $x \in \mathbb{R}$,

$$g(x) = x_1 f_1(x) + x_2 f_2(x) + x_3 f_3(x) = x_1 e^x + x_2 e^{jx} + x_3 e^{j^2 x}.$$

En particulier, pour x = 0, on a

$$0 = q(0) = x_1 + x_2 + x_3$$
.

De plus la fonction g est deux fois dérivable sur \mathbb{R} comme somme de fonctions qui le sont et pour tout $x \in \mathbb{R}$,

$$g'(x) = x_1 e^x + jx_2 e^{jx} + j^2 x_3 e^{j^2 x}$$
$$g''(x) = x_1 e^x + j^2 x_2 e^{jx} + j^4 x_3 e^{j^2 x}$$

Or $j^3 = 1$ et $j^4 = j$. Donc $\forall x \in \mathbb{R}$, $g''(x) = x_1 e^x + j^2 x_2 e^{jx} + j x_3 e^{j^2 x}$. Or $g = 0_{\mathscr{C}(\mathbb{R},\mathbb{C})}$ implique que $g' = g'' = 0_{\mathscr{C}(\mathbb{R},\mathbb{C})}$. Donc en particulier,

$$0 = g'(0) = x_1 + jx_2 + j^2x_3$$

$$0 = g''(0) = x_1 + j^2x_2 + jx_3.$$

Conclusion, on obtient:

$$(S) : \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + jx_2 + j^2x_3 = 0 \\ x_1 + j^2x_2 + jx_3 = 0 \end{cases}.$$

(b) On a les équivalences suivantes :

$$(S) \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ (j-1)x_2 + (j^2 - 1)x_3 = 0 \\ (j^2 - 1)x_2 + (j-1)x_3 = 0 \end{cases} \qquad L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + (j+1)x_3 = 0 \\ (j+1)x_2 + x_3 = 0 \end{cases} \qquad \text{car } j - 1 \neq 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + (j+1)x_3 = 0 \\ (1 - (j+1)^2)x_3 = 0 \end{cases} \qquad L_3 \leftarrow L_3 - (j+1)L_2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + (j+1)x_3 = 0 \\ (-j^2 - 2j)x_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + (j+1)x_3 = 0 \\ (-j^2 - 2j)x_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + (j+1)x_3 = 0 \\ -j(j+2)x_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases} \qquad \text{car } j \neq 0 \text{ et } j + 2 \neq 0.$$

Conclusion,

$$(\mathcal{S}) \qquad \Leftrightarrow \qquad x_1 = x_2 = x_3 = 0.$$

2. Montrons que $\mathscr{C} = (f_1, f_2, f_3)$ est libre. Soit $(x_1, x_2, x_3) \in \mathbb{C}^3$ tel que $x_1 f_1 + x_2 f_2 + x_3 f_3 = 0_{\mathscr{F}(\mathbb{C}, \mathbb{C})}$. Alors par les questions précédentes, (x_1, x_2, x_2) est solution de (\mathcal{S}) et donc $x_1 = x_2 = x_3$. Donc \mathscr{C} est libre. Or par définition de E, \mathscr{C} est une famille génératrice de E. Conclusion,

$$\mathscr{C}$$
 est une base de E et dim $(E) = \operatorname{Card}(\mathscr{C}) = 3$.

3. Calculons pour tout $x \in \mathbb{C}$,

$$T(f_1)(x) = f_1 \circ \tau(x) = f_1(jx) = e^{jx} = f_2(x)$$

$$T(f_2)(x) = f_2 \circ \tau(x) = f_2(jx) = e^{j(jx)} = e^{j^2x} = f_3(x)$$

$$T(f_3)(x) = f_3 \circ \tau(x) = f_3(jx) = e^{j^2(jx)} = e^{j^3x} = e^x = f_1(x).$$

Ceci étant vrai pour tout $x \in \mathbb{C}$, on a bien $T(f_1) = f_2$, $T(f_2) = f_3$ et $T(f_3) = f_1$. Conclusion,

$$T(\mathscr{C}) = (f_2, f_3, f_1).$$

4. Montrons que T est linéaire. Pour tout $(\lambda, \mu) \in \mathbb{C}^2$ et tout $(f, g) \in E^2$, on pose $h = \lambda f + \mu g$. Alors, pour tout $x \in \mathbb{C}$, on a

$$T(h)(x) = h \circ \tau(x) = h(jx) = \lambda f(jx) + \mu g(jx) = \lambda f \circ \tau(x) + \mu g \circ \tau(x) = \lambda T(f)(x) + \mu T(g)(x).$$

Ceci étant vrai pour tout $x \in \mathbb{C}$, on a donc $T(\lambda f + \mu g) = T(h) = \lambda T(f) + \mu T(g)$. Donc T est linéaire. Montrons maintenant que T est à valeurs dans E. Soit $f \in E = \text{Vect}_{\mathbb{C}}(\mathscr{C})$. Alors, il existe $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{C}^3$ tel que $f = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$. Donc par linéarité de T, on a

$$T(f) = T(\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3) = \lambda_1 T(f_1) + \lambda_2 T(f_2) + \lambda_3 T(f_3).$$

Donc par la question précédente,

$$T(f) = \lambda_1 f_2 + \lambda_2 f_3 + \lambda_3 f_1 \in \text{Vect}_{\mathbb{C}}(\mathscr{C}) = E$$

Donc $T: E \to E$. Conclusion,

$$T \in \mathcal{L}(E)$$
 est un endomorphisme de E .

5. T est une endomorphisme de E de plus, par la question 3. l'image de \mathscr{C} par T est donnée par $T(\mathscr{C}) = (f_2, f_3, f_1)$. Or par permutation circulaire des vecteurs, on a

$$\operatorname{rg}(f_2, f_3, f_1) = \operatorname{rg}(f_1, f_2, f_3) = \operatorname{rg}(\mathscr{C}) = 3$$
 car \mathscr{C} est libre.

Donc $\operatorname{rg}(T(\mathscr{C})) = 3 = \dim(E) = \operatorname{Card}(T(\mathscr{C}))$. Donc $T(\mathscr{C})$ est libre et génératrice de E. Donc $T(\mathscr{C})$ est une base de E. Donc T envoie une base sur une base et donc T est un isomorphisme. Conclusion,

$$T \in GL(E)$$
 est un automorphisme de E .

6. On sait que $T(f_1) = f_2$, $T(f_2) = f_3$, $T(f_3) = f_1$. On a donc directement

$$M = \operatorname{mat}_{\mathscr{C}}(T) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

On pose
$$u = -T - T^2$$
, $A = \text{mat}_{\mathscr{C}}(u)$, $B = \begin{pmatrix} 3 & -3 & -1 \\ 0 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix}$.

7. On a directement

$$A = -M - M^{2} = -\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

Conclusion,

$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

8. Puisque $A = \text{mat}_{\mathscr{C}}(u)$. On a directement $u(f_1) = -f_2 - f_3$ i.e.

$$\forall x \in \mathbb{C}, \quad u(f_1)(x) = -f_2(x) - f_3(x) = -e^{jx} - e^{j^2x}.$$

9. Soit v l'endomorphisme de \mathbb{C}^3 canoniquement associé à B. Pour tout $(x,y,z)\in\mathbb{C}^3$, on a

$$v\left(x,y,z\right) = B \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{pmatrix} 3 & -3 & -1 \\ 0 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3x - 3y - z \\ 2y \\ x - 3y + z \end{bmatrix}.$$

Conclusion,

$$\forall (x, y, z) \in \mathbb{C}^3, \quad v(x, y, z) = (3x - 3y - z, 2y, x - 3y + z).$$

On note w l'endomorphisme de E tel que $B = \text{mat}_{\mathscr{C}}(w) = B$.

10. Soit $f \in E$ tel que $\operatorname{mat}_{\mathscr{C}}(f) = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Déterminer w(f). Notons $X = \operatorname{mat}_{\mathscr{C}}(f)$ et $Y = \operatorname{mat}_{\mathscr{C}}(w(f))$.

Alors, on a

$$Y = BX = \begin{pmatrix} 3 & -3 & -1 \\ 0 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1 - 3x_2 - x_3 \\ 2x_2 \\ x_1 - 3x_2 + x_3 \end{bmatrix}.$$

Donc

$$w(f) = (3x_1 - 3x_2 - x_3) f_1 + 2x_2 f_2 + (x_1 - 3x_2 + x_3) f_3.$$

Partie 2 : Trigonalisation de B

On pose
$$a = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 et $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

11. Soient $\lambda \in \mathbb{C}$ et $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{C}^3$. On a les équivalences suivantes :

$$X \in \operatorname{Ker}(B - \lambda I_{3}) \qquad \Leftrightarrow \qquad (B - \lambda I_{3}) X = 0_{\mathbb{C}^{3}}$$

$$\Leftrightarrow \qquad \begin{pmatrix} 3 - \lambda & -3 & -1 \\ 0 & 2 - \lambda & 0 \\ 1 & -3 & 1 - \lambda \end{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0_{\mathbb{C}^{3}}$$

$$\Leftrightarrow \qquad \begin{bmatrix} (3 - \lambda) x - 3y - z \\ (2 - \lambda) y \\ x - 3y + (1 - \lambda) z \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \qquad \begin{cases} (3 - \lambda) x - 3y - z = 0 \\ (2 - \lambda) y = 0 \\ x - 3y + (1 - \lambda) z = 0 \end{cases}$$

Premier cas, si $\lambda = 2$. Alors,

$$X \in \text{Ker}(B-2I_3)$$
 \Leftrightarrow
$$\begin{cases} x - 3y - z = 0 \\ 0 = 0 \\ x - 3y - z = 0 \end{cases}$$
 \Leftrightarrow $x = 3y + z$.

Donc

$$\operatorname{Ker}(f - 2I_3) = \operatorname{Vect}\left(\begin{bmatrix} 3\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\1\end{bmatrix}\right).$$

Les deux vecteurs obtenus n'étant pas colinéaires, ils forment une famille libre et donc une base de $\text{Ker}(f-2I_3)$.

Deuxième cas, supposons que $\lambda \neq 2$. Dès lors,

$$X \in \text{Ker}(B - \lambda I_3) \qquad \Leftrightarrow \qquad \begin{cases} (3 - \lambda) x - z = 0 \\ y = 0 \\ x + (1 - \lambda) z = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ x + (1 - \lambda) (3 - \lambda) x = 0 \end{cases}$$

Donc

$$X \in \text{Ker} (B - \lambda I_3) \qquad \Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (1 + 3 - 4\lambda + \lambda^2) x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (4 - 4\lambda + \lambda^2) x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} z = (3 - \lambda) x \\ y = 0 \\ (\lambda - 2)^2 x = 0 \end{cases}$$

Dans ce cas, $\operatorname{Ker}(B - \lambda I_3) = \{0_{\mathbb{C}^3}\}.$

Conclusion,

$$\operatorname{Ker}(B - \lambda I_3) = \operatorname{Vect}\left(\begin{bmatrix} 3\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\1\end{bmatrix}\right) \quad \text{et} \quad \forall \lambda \in \mathbb{C} \setminus \{2\}, \operatorname{Ker}(B - \lambda I_3) = \{0_{\mathbb{C}^3}\}.$$

12. Par la question précédente, on a Ker $(B - 2I_3) = \text{Vect}(a, b)$ donc (a, b) est une famille génératrice de Ker $(B - 2I_3)$. De plus les vecteurs ne sont pas colinéaires donc forment une famille libre. Conclusion,

$$(a,b) = \begin{pmatrix} \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$
 est une base de Ker $(B-2I_3)$.

Attention, si vous avez obtenu une autre famille précédemment, il faut effectuer des opérations élémentaires pour reconstruire (a,b).

Puisque $B - 2I_3 = \text{mat}_{\mathscr{C}}(w - 2\text{Id}_E)$, alors, on obtient que

$$\operatorname{Ker}(w - 2\operatorname{Id}_{E}) = \operatorname{Vect}(3f_{1} + f_{2}, f_{1} + f_{3}).$$

13. Par la question précédente, on a dim $(\text{Ker}(B-2I_3)) = \text{Card}(a,b) = 2$. Donc par le théorème du rang,

$$\operatorname{rg}(B - 2I_3) = 3 - \dim(\operatorname{Ker}(B - 2I_3)) = 3 - 2 = 1.$$

Donc une seule colonne non nulle de $B-2I_3$ suffit à engendrer toute l'image (qui est donc une droite

vectorielle). Or
$$B - 2I_3 = \begin{pmatrix} 1 & -3 & -1 \\ 0 & 0 & 0 \\ 1 & -3 & -1 \end{pmatrix}$$
. Conclusion,

$$\boxed{\operatorname{Im}(B - 2I_3) = \operatorname{Vect}\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) = \operatorname{Vect}(b).}$$

Et ainsi,

$$\operatorname{Im}(w - 2I_E) = \operatorname{Vect}(f_1 + f_3).$$

14. Soient
$$x \in \mathbb{C}^*$$
 et $c = \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix}$ et $\mathscr{B}_v = (a, b, c)$. On a

$$\operatorname{rg}(\mathscr{B}_{v}) = \operatorname{rg}\left(\begin{bmatrix}3\\1\\0\end{bmatrix}, \begin{bmatrix}1\\0\\1\end{bmatrix}, \begin{bmatrix}x\\0\\0\end{bmatrix}\right) = \operatorname{rg}\begin{pmatrix}3 & 1 & x\\1 & 0 & 0\\0 & 1 & 0\end{pmatrix} = \operatorname{rg}\begin{pmatrix}x & 1 & 3\\0 & 0 & 1\\0 & 1 & 0\end{pmatrix} \qquad C_{1} \leftrightarrow C_{3}$$

$$= \operatorname{rg}\begin{pmatrix}x\\1\\0\\1\end{bmatrix} \qquad C_{2} \leftrightarrow C_{3}.$$

Puisque $x \neq 0$, on a bien 3 pivots, donc $\operatorname{rg}(\mathscr{B}_v) = 3 = \dim(E) = \operatorname{Card}(\mathscr{B}_v)$. Donc \mathscr{B}_v est libre et génératrice. Conclusion,

$$\mathscr{B}_v = (a, b, c)$$
 est une base de \mathbb{C}^3 .

15. Puisque v est associé à B dans la base canonique de \mathbb{C}^3 , on a

$$\operatorname{Ker}(v - 2\operatorname{Id}_{\mathbb{C}^3}) = \operatorname{Ker}(B - 2I_3) = \operatorname{Vect}(a, b).$$

Donc $a \in \text{Ker}(v - 2\text{Id}_{\mathbb{C}^3})$ i.e.

$$(v - 2\mathrm{Id}_{\mathbb{C}^3})(a) = 0_{\mathbb{C}^3} \qquad \Leftrightarrow \qquad v(a) - 2a = 0_{\mathbb{C}^3} \qquad \Leftrightarrow \qquad v(a) = 2a.$$

De même, v(b) = 2b. Enfin, on cherche x et donc c tel que v(c) = 2c + b i.e.

$$B\begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} = 2\begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{pmatrix} 3 & -3 & -1 \\ 0 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix} \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2x+1 \\ 0 \\ 1 \end{bmatrix}$$
$$\Leftrightarrow \qquad \begin{bmatrix} 3x \\ 0 \\ x \end{bmatrix} = \begin{bmatrix} 2x+1 \\ 0 \\ 1 \end{bmatrix}$$
$$\Leftrightarrow \qquad \begin{cases} 3x = 2x+1 \\ x = 1 \end{cases}$$
$$\Leftrightarrow \qquad x = 1.$$

Posons x = 1 et donc $c = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Alors, par les équivalences précédentes, on a v(c) = 2c + b. Conclusion,

Si
$$x = 1$$
, alors $\operatorname{mat}_{\mathscr{B}_v}(v) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Partie 3: Diagonalisation de A

On pose $e_1 = f_1 - f_3$, $e_2 = f_2 - f_3$, $e_3 = f_1 + f_2 + f_3$, $\mathcal{B}_u = (e_1, e_2, e_3)$ et enfin $P = \text{mat}_{\mathscr{C}}(\mathcal{B}_u)$.

16. Par définition de P et de \mathcal{B}_u , on a directement,

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

17. Par opération élémentaire, on a

$$\operatorname{rg}(P) = \operatorname{rg}\begin{pmatrix} \boxed{1} & 0 & 1\\ 0 & \boxed{1} & 1\\ 0 & 0 & \boxed{1} \end{pmatrix} \qquad L_3 \leftarrow \frac{L_1 + L_2 + L_3}{3}.$$

Conclusion,

$$rg(P) = 3.$$

18. Puisque rg (P) = 3, on en déduit que $P = \text{mat}_{\mathscr{C}}(\mathscr{B}_u)$ est une matrice inversible. Conclusion,

$$\mathscr{B}_u$$
 est une base de E .

19. On a
$$X = \max_{\mathscr{C}}(e_1) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 et $A = \max_{\mathscr{C}}(u) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$. Donc

$$Y = \operatorname{mat}_{\mathscr{C}}(u(e_1)) = AX = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = X.$$

Donc $u(e_1) = e_1$. De même,

$$\operatorname{mat}_{\mathscr{C}}\left(u\left(e_{2}\right)\right) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \operatorname{mat}_{\mathscr{C}}\left(e_{2}\right).$$

Donc $u(e_2) = e_2$. Enfin,

$$\operatorname{mat}_{\mathscr{C}}(u(e_3)) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix} = -2\operatorname{mat}_{\mathscr{C}}(e_3).$$

Donc $u(e_3) = -2e_3$. Conclusion,

$$u\left(\mathscr{B}_{u}\right)=\left(e_{1},e_{2},-2e_{3}\right).$$

20. Directement, par la question précédente, on a

$$D = \operatorname{mat}_{\mathcal{B}_u}(u) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

21. Par la formule de changement de base, on a

$$A = PDP^{-1}$$
 ou encore $D = P^{-1}AP$.

22. On a les égalités dans E suivantes :

$$\frac{2e_1 - e_2 + e_3}{3} = \frac{2f_1 - 2f_3 - f_2 + f_3 + f_1 + f_2 + f_3}{3} = f_1.$$

Conclusion,

$$\frac{2e_1 - e_2 + e_3}{3} = f_1.$$

23. Par la question précédente, on a

$$\operatorname{mat}_{\mathscr{B}_{u}}\left(f_{1}\right)=\frac{1}{3}\begin{bmatrix}2\\-1\\1\end{bmatrix}.$$

Donc pour tout $n \in \mathbb{N}$,

$$\operatorname{mat}_{\mathcal{B}_{u}}(u^{n}(f_{1})) = \operatorname{mat}_{\mathcal{B}_{u}}(u^{n}) \operatorname{mat}_{\mathcal{B}_{u}}(f_{1}) = D^{n} \operatorname{mat}_{\mathcal{B}_{u}}(f_{1}).$$

Or pour tout $n \in \mathbb{N}$ (y compris n = 0), on a par récurrence,

$$D^n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^n \end{bmatrix}.$$

Par conséquent,

$$\operatorname{mat}_{\mathscr{B}_{u}}\left(u^{n}\left(f_{1}\right)\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \left(-2\right)^{n} \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ \left(-2\right)^{n} \end{bmatrix}.$$

Or en posant $X' = \operatorname{mat}_{\mathscr{B}_n}(u^n(f_1))$ et $X = \operatorname{mat}_{\mathscr{C}}(u^n(f_1))$, on sait que

$$X = PX' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ (-2)^n \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 + (-2)^n \\ -1 + (-2)^n \\ -1 + (-2)^n \end{bmatrix}.$$

Finalement en repassant dans E, on obtient alors,

$$u^{n}(f_{1}) = \frac{(2 + (-2)^{n}) f_{1} + (-1 + (-2)^{n}) f_{2} + (-1 + (-2)^{n}) f_{3}}{3}$$

$$= \frac{(3 - 1 + (-2)^{n}) f_{1} + (-1 + (-2)^{n}) f_{2} + (-1 + (-2)^{n}) f_{3}}{3}$$

$$= f_{1} + \frac{(-2)^{n} - 1}{3} (f_{1} + f_{2} + f_{3}).$$

Donc en posant $\lambda = 1$ et $\mu_n = \frac{(-2)^n - 1}{3}$, on obtient bien le résultat souhaité. Conclusion,

$$\forall n \in \mathbb{N}, \quad u^n(f_1) = f_1 + \frac{(-2)^n - 1}{3} (f_1 + f_2 + f_3).$$

Partie 4 : Vecteurs propres de A et de B

On considère les ensembles suivants :

$$\mathscr{E}_A = \left\{ X \in \mathbb{C}^3 \mid \exists \lambda \in \mathbb{C}, \ AX = \lambda X \right\}$$
$$\mathscr{E}_B = \left\{ X \in \mathbb{C}^3 \mid \exists \mu \in \mathbb{C}, \ BX = \mu X \right\}$$

24. Soit $X \in \mathbb{C}^3$. On a

$$X \in \mathscr{E}_B$$
 \Leftrightarrow $\exists \mu \in \mathbb{C}, \ BX = \mu X$
 \Leftrightarrow $\exists \mu \in \mathbb{C}, \ (B - \mu I_3) \ X = 0_{\mathbb{C}^3}$
 \Leftrightarrow $\exists \mu \in \mathbb{C}, \ X \in \operatorname{Ker}(B - \mu I_3).$

Premier cas, $\mu \neq 2$ et donc par la question 11. $X \in \text{Ker}(B - \mu I_3) = \{0_{\mathbb{C}^3}\}$. Deuxième cas, $\mu = 2$ et donc $X \in \text{Ker}(B - 2I_3)$. Donc

$$X \in \mathscr{E}_B \qquad \Leftrightarrow \qquad X = 0_{\mathbb{C}^3} \text{ OU } X \in \mathrm{Ker}\left(B - 2I_3\right).$$

Or $0_{\mathbb{C}^3} \in \text{Ker}(B-2I_3)$. Finalement,

$$X \in \mathscr{E}_B \quad \Leftrightarrow \quad X \in \operatorname{Ker}(B - 2I_3).$$

Conclusion,

$$\mathscr{E}_B = \operatorname{Ker}(B - 2I_3).$$

25. Soient $X \in \mathbb{C}^3$ et $Y = \operatorname{mat}_{\mathscr{B}_u}(X)$, $\lambda \in \mathbb{C}$. Rappelons que $D = \operatorname{mat}_{\mathscr{B}_u}(u)$, $A = \operatorname{mat}_{\mathscr{C}}(u)$, $P = \operatorname{mat}_{\mathscr{C}}(\mathscr{B}_u)$ et $A = PDP^{-1}$. Donc on a X = PY. Dès lors,

$$X \in \operatorname{Ker}(A - \lambda I_3)$$
 \Leftrightarrow $AX = \lambda X$
 \Leftrightarrow $PDP^{-1}PY = \lambda PY$
 \Leftrightarrow $PDY = P(\lambda Y)$
 \Leftrightarrow $DY = \lambda Y$ car P est inversible
 \Leftrightarrow $Y \in \operatorname{Ker}(D - \lambda I_3)$.

Conclusion,

$$X \in \operatorname{Ker}(A - \lambda I_3) \Leftrightarrow Y \in \operatorname{Ker}(D - \lambda I_3).$$

26. Soit $\lambda \in \mathbb{C}$. On a

$$D - \lambda I_3 = \begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & -2 - \lambda \end{pmatrix}.$$

Si $\lambda \in \mathbb{C} \setminus \{1; -2\}$. Alors, $1 - \lambda \neq 0$, $-2 - \lambda \neq 0$ et donc rg $(D - \lambda I_3) = 3$ i.e. $D - \lambda I_3$ est inversible et donc Ker $(D - \lambda I_3) = \{0_{\mathbb{C}^3}\}$. Or, pour $X \in \mathbb{C}^3$, on a les équivalences suivantes

$$X \in \mathscr{E}_A \qquad \Leftrightarrow \qquad \exists \, \lambda \in \mathbb{C}^3, \, \, X \in \mathrm{Ker} \, (A - \lambda \, I_3) \\ \Leftrightarrow \qquad \exists \, \lambda \in \mathbb{C}^3, \, \, Y \in \mathrm{Ker} \, (D - \lambda \, I_3) \qquad \mathrm{par} \, \mathrm{la} \, \, \mathrm{question} \, \mathrm{pr\'ec\'edente} \\ \Leftrightarrow \qquad \exists \, \lambda \in \mathbb{C}^3, \, \, Y \in \mathrm{Ker} \, (D - \lambda \, I_3) = \{0_{\mathbb{C}^3}\} \\ \qquad \qquad \qquad \mathrm{OU} \, \, Y \in \mathrm{Ker} \, (D - I_3) \quad \mathrm{OU} \, \, Y \in \mathrm{Ker} \, (D + 2I_3) \\ \Leftrightarrow \qquad Y \in \{0_{\mathbb{C}^3}\} \quad \mathrm{OU} \, \, Y \in \mathrm{Ker} \, (D - I_3) \cup \mathrm{Ker} \, (D + 2I_3) \, .$$

Or $\{0_{\mathbb{C}^3}\}\subset \operatorname{Ker}(D-I_3)\cup \operatorname{Ker}(D+2I_3)$. Donc,

$$X \in \mathscr{E}_A \qquad \Leftrightarrow \qquad Y \in \operatorname{Ker}(D - I_3) \cup \operatorname{Ker}(D + 2I_3)$$
.

En raisonnant comme à la question précédente, on a $Y \in \text{Ker}(D - I_3) \cup \text{Ker}(D + 2I_3) \Leftrightarrow X \in \text{Ker}(A - I_3) \cup \text{Ker}(A + 2I_3)$. D'où,

$$X \in \mathscr{E}_A \qquad \Leftrightarrow \qquad X \in \operatorname{Ker}(A - I_3) \cup \operatorname{Ker}(A + 2I_3).$$

Conclusion,

$$\mathscr{E}_A = \operatorname{Ker}(A - I_3) \cup \operatorname{Ker}(A + 2I_3).$$

Problème II - Analyse (d'après banque PT 2015)

Les questions avec un astérisque ont été modifiées par rapport au sujet initial.

Partie 1: Fonctions et encadrements

Soit n un entier naturel non nul. On considère les fonctions f_n et g_n définies, pour tout réel x, par

$$f_n(x) = e^{\frac{x^2}{n}} - \frac{x^2}{n} - 1$$
 et $g_n(x) = e^{-\frac{x^2}{n}} + \frac{x^2}{n} - 1$.

1. Etudions la parité de f_n et g_n et déduisons-en un domaine d'étude de ces fonctions.

Les fonctions f_n et g_n sont bien définies sur \mathbb{R} comme différence de fonctions qui le sont. L'ensemble \mathbb{R} est bien centré en 0 et de plus, pour tout $x \in \mathbb{R}$,

$$f_n(-x) = e^{\frac{(-x)^2}{n}} - \frac{(-x)^2}{n} - 1 = e^{\frac{x^2}{n}} - \frac{x^2}{n} - 1 = f_n(x)$$
$$g_n(-x) = e^{-\frac{(-x)^2}{n}} + \frac{(-x)^2}{n} - 1 = e^{-\frac{x^2}{n}} + \frac{x^2}{n} - 1 = g_n(x),$$

par parité de la fonction carrée. Conclusion,

les fonctions f_n et g_n sont paires, il suffit donc de les étudier sur \mathbb{R}_+ .

- 2. On souhaite ici tracer les courbes représentatives des fonctions f_1 et g_1 sur un même graphe.
 - (a) Pour $x \in \mathbb{R}$, exprimons $f_1(x) g_1(x)$ à l'aide de la fonction sinus hyperbolique. Par définition, on a

$$f_1(x) - g_1(x) = e^{x^2} - x^2 - 1 - (e^{-x^2} + x^2 - 1)$$
$$= e^{x^2} - e^{-x^2} - 2x^2$$
$$= 2 \operatorname{sh}(x^2) - 2x^2.$$

Conclusion,

$$\forall x \in \mathbb{R}, \quad f_1(x) - g_1(x) = 2 \operatorname{sh}(x^2) - 2x^2.$$

(b) Montrons que pour tout réel $t \ge 0$, $\operatorname{sh}(t) \ge t$ et montrons que $f_1(x) \ge g_1(x)$ pour tout $x \ge 0$. Posons pour tout $t \ge 0$, $h(t) = \operatorname{sh}(t) - t$. La fonction h est dérivable sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \quad h'(t) = \operatorname{ch}(t) - 1 \geqslant 0.$$

Donc la fonction h est croissante sur \mathbb{R} . Ainsi,

$$\forall t \in \mathbb{R}_+, \quad h(t) \geqslant g(0) = 0 \qquad \Leftrightarrow \qquad \operatorname{sh}(t) \geqslant t.$$

Conclusion,

$$\forall t \in \mathbb{R}_+, \quad \operatorname{sh}(t) \geqslant t.$$

Soit $x \ge 0$. Posons $t = x^2$. Puisque $t \ge 0$,

$$\operatorname{sh}(x^2) \geqslant x^2 \qquad \Leftrightarrow \qquad \operatorname{sh}(x^2) - x^2 \geqslant 0.$$

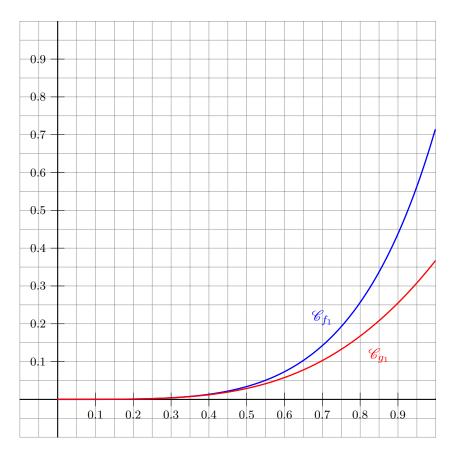
Donc par la question précédente,

$$f_1(x) - g_1(x) = 2\left(\sinh\left(x^2\right) - x^2\right) \geqslant 0.$$

Conclusion,

$$\forall x \geqslant 0, \quad f_1(x) \geqslant f_1(x).$$

(c) On note que $f_1(0) = 1 - 0 - 1 = 0$, $g_1(0) = 1 + 0 - 1 = 0$, $f_1(1) = e - 2 \in]0; 1[$ et $g_1(1) = e^{-1} \in]0; 1[$. On obtient alors,



3. On suppose $n \ge 2$.

(a) Calculons, pour tout réel x, $f'_n(x)$ et $g'_n(x)$. Les fonctions f_n et g_n sont dérivables sur \mathbb{R} en tant que différences et composée de fonctions qui le sont. De plus, pour tout $x \in \mathbb{R}$,

$$f'_n(x) = \frac{2x}{n} e^{\frac{x^2}{n}} - \frac{2x}{n} = \frac{2x}{n} \left(e^{\frac{x^2}{n}} - 1 \right)$$
$$g'_n(x) = -\frac{2x}{n} e^{-\frac{x^2}{n}} + \frac{2x}{n} = \frac{2x}{n} \left(1 - e^{\frac{x^2}{n}} \right).$$

Conclusion,

$$\forall x \in \mathbb{R}, \quad f'_n(x) = \frac{2x}{n} \left(e^{\frac{x^2}{n}} - 1 \right) \text{ et } g'_n(x) = \frac{2x}{n} \left(1 - e^{\frac{x^2}{n}} \right).$$

(b) Etudions les variations de f_n et g_n sur \mathbb{R}_+ . Soit $x \in \mathbb{R}_+$. Par la question précédente,

$$f'_n(x) \ge 0$$
 \Leftrightarrow $e^{\frac{x^2}{n}} - 1 \ge 0$ $car \ x \ge 0$ \Leftrightarrow $e^{\frac{x^2}{n}} \ge 1$ \Leftrightarrow $\frac{x^2}{n} \ge 0$ toujours vrai.

De même,

$$g_n'(x) \geqslant 0$$
 \Leftrightarrow $1 - e^{-\frac{x^2}{n}} \geqslant 0$ $\operatorname{car} x \geqslant 0$ \Leftrightarrow $1 \geqslant e^{-\frac{x^2}{n}}$ \Leftrightarrow $0 \geqslant -\frac{x^2}{n}$ toujours vrai.

Conclusion,

les fonctions f_n et g_n sont croissantes sur \mathbb{R}_+ .

(c) Montrons que, pour tout réel positif : $f_n(x) \ge 0$ et $g_n(x) \ge 0$. Par la question précédente,

$$\forall x \in \mathbb{R}_+, \quad f_n(x) \geqslant f_n(0) = 0 \text{ et } g_n(x) \geqslant g_n(0) = 0.$$

Conclusion,

$$\forall x \in \mathbb{R}_+, \quad f_n(x) \geqslant 0 \text{ et } g_n(x) \geqslant 0.$$

(d) Montrons que pour tout réel x de l'intervalle $[0; \sqrt{n}], (1 - \frac{x^2}{n})^n \leq e^{-x^2} \leq (1 + \frac{x^2}{n})^{-n}$. Soit $x \in [0; \sqrt{n}] \subset \mathbb{R}_+$. Par la question précédente,

$$f_n(x) \ge 0$$
 \Leftrightarrow $e^{\frac{x^2}{n}} - \frac{x^2}{n} - 1 \ge 0$ \Leftrightarrow $e^{\frac{x^2}{n}} \ge \frac{x^2}{n} + 1$ \Leftrightarrow $e^{-x^2} \ge \left(1 + \frac{x^2}{n}\right)^{-n}$,

par décroissance de la fonction $x \mapsto x^{-n}$ sur \mathbb{R}_+ . D'autre part,

$$g_n(x) \ge 0$$
 \Leftrightarrow $e^{-\frac{x^2}{n}} + \frac{x^2}{n} - 1 \ge 0$
 \Leftrightarrow $e^{-\frac{x^2}{n}} \ge 1 - \frac{x^2}{n}$.

Or $x \leq \sqrt{n}$ donc $x^2 \leq n$ et donc $1 - \frac{x^2}{n} \geq 0$. Par croissance de la fonction $x \mapsto x^n$ sur \mathbb{R}_+ , on en déduit que $e^{-x^2} \geq \left(1 - \frac{x^2}{n}\right)^n$. Conclusion,

$$\left(1 - \frac{x^2}{n}\right)^n \leqslant e^{-x^2} \leqslant \left(1 + \frac{x^2}{n}\right)^{-n}.$$

On note que l'hypothèse $x\leqslant \sqrt{n}$ n'a été utile dans le raisonnement que pour l'inégalité inférieure,

l'inégalité de droite est donc encore vraie sur \mathbb{R}_+ .

(e) Dans cette question, on suppose x fixé dans \mathbb{R}_+ .

Déterminons
$$\lim_{n\to+\infty} \left(1-\frac{x^2}{n}\right)^n$$
 et $\lim_{n\to+\infty} \left(1+\frac{x^2}{n}\right)^{-n}$. Soit $n\in\mathbb{N}^*$. On a
$$\left(1-\frac{x^2}{n}\right)^n=\mathrm{e}^{n\ln\left(1-\frac{x^2}{n}\right)}.$$

Or $\ln(1+u) = u + o(u)$. Posons $u(n) = -\frac{x^2}{n}$. On a

•
$$u(n) = -\frac{x^2}{n} \underset{n \to +\infty}{\longrightarrow} 0,$$

et

$$o(u(n)) \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right).$$

Dès lors,

$$e^{n \ln\left(1 - \frac{x^2}{n}\right)} \underset{n \to +\infty}{=} e^{n\left(-\frac{x^2}{n} + o\left(\frac{1}{n}\right)\right)}$$

$$\underset{n \to +\infty}{=} e^{-x^2 + o(1)}$$

$$\underset{n \to +\infty}{=} e^{-x^2} e^{o(1)}$$

$$\underset{n \to +\infty}{=} e^{-x^2} (1 + o(1))$$

$$\underset{n \to +\infty}{=} e^{-x^2} + o(1).$$

Ainsi,

$$\lim_{n \to +\infty} \left(1 - \frac{x^2}{n}\right)^n = e^{-x^2}.$$

De même,

$$\left(1 + \frac{x^2}{n}\right)^{-n} \underset{n \to +\infty}{=} e^{-n\ln\left(1 + \frac{x^2}{n}\right)}$$

$$\underset{n \to +\infty}{=} e^{-n\left(\frac{x^2}{n} + o\left(\frac{1}{n}\right)\right)}$$

$$\underset{n \to +\infty}{=} e^{-x^2} + o\left(1\right).$$

Conclusion,

$$\lim_{n \to +\infty} \left(1 - \frac{x^2}{n}\right)^n = \lim_{n \to +\infty} \left(1 + \frac{x^2}{n}\right)^{-n} = e^{-x^2}.$$

(f) Montrons que pour tout réel positif $x: \left(1+\frac{x^2}{n}\right)^{-n} \leqslant \frac{1}{1+x^2}$. Pour tout $x \geqslant 0$, posons

$$h(x) = \frac{\left(1 + \frac{x^2}{n}\right)^n}{1 + x^2}.$$

Pour tout $x \ge 0$, $1 + x^2 \ge 1 > 0$. Donc par quotient de fonctions dérivables dont le dénominateur ne s'annule pas, h est dérivable sur \mathbb{R}_+ et pour tout $x \ge 0$,

$$h'(x) = \frac{n\frac{2x}{n}\left(1 + \frac{x^2}{n}\right)^{n-1}\left(1 + x^2\right) - 2x\left(1 + \frac{x^2}{n}\right)^n}{(1+x^2)^2}$$

$$= \frac{2x\left(1 + \frac{x^2}{n}\right)^{n-1}\left(1 + x^2 - \left(1 + \frac{x^2}{n}\right)\right)}{(1+x^2)^2}$$

$$= \frac{2x\left(1 + \frac{x^2}{n}\right)^{n-1}\left(x^2 - \frac{x^2}{n}\right)}{(1+x^2)^2}$$

$$= \frac{2x^3\left(1 + \frac{x^2}{n}\right)^{n-1}\left(1 - \frac{1}{n}\right)}{(1+x^2)^2}.$$

Puisque $n \ge 1$, $1 - \frac{1}{n} \ge 0$. De plus, $2x^3 \ge 0$, $\left(1 + \frac{x^2}{n}\right)^{n-1} \ge 0$ et $\left(1 + x^2\right)^2 \ge 0$. Par produit et quotient,

$$\forall x \geqslant 0, \quad h'(x) \geqslant 0.$$

Donc la fonction h est croissante sur \mathbb{R}_+ et donc

$$\forall x \geqslant 0, \quad h(x) \geqslant h(0) = 1.$$

D'où,

$$\forall x \geqslant 0, \quad \frac{\left(1 + \frac{x^2}{n}\right)^n}{1 + x^2} \geqslant 1 \qquad \Leftrightarrow \qquad \forall x \geqslant 0, \quad \frac{1}{1 + x^2} \geqslant \left(1 + \frac{x^2}{n}\right)^{-n},$$

 $\operatorname{car}\left(1+\frac{x^2}{n}\right)^n > 0$. Conclusion,

$$\forall x \geqslant 0, \quad \frac{1}{1+x^2} \geqslant \left(1+\frac{x^2}{n}\right)^{-n}.$$

(g) Montrons que $\int_0^1 \frac{1}{1+x^2} dx$ existe et calculons sa valeur. Pour tout $x \in \mathbb{R}$, $1+x^2 \ge 1 > 0$. Donc la fonction $x \mapsto \frac{1}{1+x^2}$ est continue sur \mathbb{R} et donc sur [0;1]. Par conséquent,

$$\int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x \text{ existe.}$$

De plus,

$$\int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x = \left[\arctan(t)\right]_{t=0}^{t=1} = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0.$$

Conclusion,

$$\int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x = \frac{\pi}{4}.$$

(h) Montrons que $\int_0^1 e^{-x^2} dx \leqslant \frac{\pi}{4}$. Par la question 3.f

$$\forall x \geqslant 0, \quad \frac{1}{1+x^2} \geqslant \left(1+\frac{x^2}{n}\right)^{-n}.$$

Donc par la question 3.d

$$\forall x \geqslant 0, \quad e^{-x^2} \leqslant \frac{1}{1+x^2}.$$

Donc par croissance de l'intégrale, car les bornes sont dans le bon sens,

$$\int_0^1 e^{-x^2} dx \le \int_0^1 \frac{1}{1+x^2} dx.$$

Conclusion, par la question précédente,

$$\int_0^1 e^{-x^2} \, \mathrm{d}x \leqslant \frac{\pi}{4}.$$

Partie 2: Intégration, équation différentielle

Pour tout réel $t \ge 0$, on pose

$$h(t) = \int_0^1 \frac{e^{-tx^2}}{1+x^2} \, \mathrm{d}x.$$

4. Montrons que h est bien définie sur \mathbb{R}_+ . Soit $t \in \mathbb{R}_+$. La fonction $x \mapsto \frac{\mathrm{e}^{-tx^2}}{1+x^2}$ est continue sur [0;1] comme quotient de fonctions qui le sont dont le dénominateur ne s'annule pas. Donc $h(t) = \int_0^1 \frac{\mathrm{e}^{-tx^2}}{1+x^2} \, \mathrm{d}x$ existe. Ceci étant vrai pour tout $t \in \mathbb{R}_+$, on en conclut que

$$h$$
 est bien définie sur \mathbb{R}_+ .

5. Calculons h(0). On a

$$h(0) = \int_0^1 \frac{e^{-0}}{1+x^2} dx = \int_0^1 \frac{1}{1+x^2} dx.$$

Donc par la question 3.g

$$h(0) = \frac{\pi}{4}.$$

6. Montrons que h est monotone sur \mathbb{R}_+ , et que, pour tout réel positif, $0 \le h(t) \le \frac{\pi}{4}$. Soit $(t,s) \in (\mathbb{R}_+)^2$. Supposons $t \le s$. Alors, pour tout $x \in [0;1]$,

$$-tx^2 \geqslant -sx^2$$
.

Par croissance de la fonction exponentielle,

$$e^{-tx^2} \geqslant e^{-sx^2}$$
.

Puisque $1 + x^2 > 0$, on obtient,

$$\forall x \in [0; 1], \quad \frac{e^{-tx^2}}{1+x^2} \geqslant \frac{e^{-sx^2}}{1+x^2}.$$

Donc par croissance de l'intégrale, car les bornes sont dans le bon sens,

$$\int_0^1 \frac{\mathrm{e}^{-tx^2}}{1+x^2} \, \mathrm{d}x \geqslant \int_0^1 \frac{\mathrm{e}^{-sx^2}}{1+x^2} \, \mathrm{d}x \qquad \Leftrightarrow \qquad h(t) \geqslant h(s).$$

Ceci étant vrai pour tout $0 \leqslant t \leqslant s$, on en conclut que

la fonction h est décroissante sur \mathbb{R}_+ .

En particulier,

$$\forall t \in \mathbb{R}_+, \quad h(t) \geqslant h(0) = \frac{\pi}{4}$$
 par la question précédente.

De plus, pour tout $t \in \mathbb{R}_+$,

$$\forall x \in [0; 1], \quad \frac{e^{-tx^2}}{1+x^2} \geqslant 0.$$

Donc par croissance de l'intégrale,

$$h(t) \geqslant 0$$
.

Conclusion,

$$\forall t \in \mathbb{R}_+, \quad 0 \leqslant h(t) \leqslant \frac{\pi}{4}.$$

On pose pour tout réel t positif,

$$\varphi(t) = \begin{cases} \frac{1}{t} \int_0^t e^{-x^2} dx & \text{si } t > 0\\ 1 & \text{si } t = 0. \end{cases}$$

7. Montrons que φ est continue sur \mathbb{R}_+ . La fonction $x \mapsto e^{-x^2}$ est continue sur \mathbb{R} . Donc par le théorème fondamentale de l'analyse,

$$F: t \mapsto \int_0^t e^{-x^2} dx,$$

est bien définie et même \mathscr{C}^1 sur \mathbb{R} et est une primitive de $x \mapsto \mathrm{e}^{-x^2}$. Pour tout t > 0,

$$\varphi(t) = \frac{F(t)}{t}.$$

Comme quotient de fonctions continues dont le dénominateur ne s'annule pas, la fonction φ est continue sur \mathbb{R}_+^* . De plus,

$$\lim_{\substack{t \to 0 \\ t > 0}} \frac{F(t)}{t} = \lim_{\substack{t \to 0 \\ t > 0}} \frac{F(t) - F(0)}{t - 0} \quad \text{car } F(0) = \int_0^0 e^{-x^2} dx = 0$$
$$= F'(0) \text{ car } F \text{ est d\'erivable en } 0$$
$$= e^{-0^2} = 1.$$

Ainsi,

$$\lim_{\substack{t \to 0 \\ t > 0}} \varphi(t) = \varphi(0).$$

D'où φ est aussi continue en 0. Conclusion,

$$\varphi$$
 est continue sur \mathbb{R}_+ .

8. Montrons que pour tout réel positif t, $\varphi\left(\sqrt{t}\right)=\int_0^1 \mathrm{e}^{-tx^2}\,\mathrm{d}x$. Soit $t\geqslant 0$. Premier cas, t>0, alors

$$\varphi\left(\sqrt{t}\right) = \frac{1}{\sqrt{t}} \int_0^{\sqrt{t}} e^{-x^2} dx.$$

Posons $y = \frac{x}{\sqrt{t}}$ i.e. $x = \sqrt{t}y$ car t > 0. Si x = 0, y = 0 et si $x = \sqrt{t}$, y = 1. De plus, la fonction $y \mapsto \sqrt{t}y$ est \mathscr{C}^1 sur [0;1] et $\mathrm{d}x = \sqrt{t}\,\mathrm{d}y$. D'où

$$\varphi\left(\sqrt{t}\right) = \frac{1}{\sqrt{t}} \int_0^1 e^{-(\sqrt{t}y)^2} \sqrt{t} \, dy$$
$$= \int_0^1 e^{-ty^2} \, dy.$$

La variable d'intégration étant muette, on en déduit que

$$\forall t > 0, \qquad \varphi\left(\sqrt{t}\right) = \int_0^1 e^{-tx^2} dx.$$

Puis pour t = 0,

$$\varphi\left(\sqrt{0}\right) = \varphi(0) = 1$$
 par définition

et

$$\int_0^1 e^{-0 \times x^2} dx = \int_0^1 1 dx = 1.$$

Donc l'égalité reste vraie pour t = 0. Conclusion,

$$\forall t \in \mathbb{R}_+, \quad \varphi\left(\sqrt{t}\right) = \int_0^1 e^{-tx^2} dx.$$

9. On admet que h est dérivable sur \mathbb{R}_+ et que pour tout réel positif t,

$$h'(t) = \int_0^1 \frac{-x^2}{1+x^2} e^{-tx^2} dx.$$

Montrons que h vérifie pour tout réel positif t, l'équation différentielle (\mathcal{E})

$$h'(t) - h(t) = -\varphi\left(\sqrt{t}\right).$$

On a pour tout $t \ge 0$,

$$h'(t) - h(t) = \int_0^1 \frac{-x^2}{1+x^2} e^{-tx^2} dx - \int_0^1 \frac{e^{-tx^2}}{1+x^2} dx$$
$$= \int_0^1 \frac{-x^2 - 1}{1+x^2} e^{-tx^2} dx$$
$$= -\int_0^1 e^{-tx^2} dx.$$

Par la question précédente, on en conclut que h vérifie

$$(\mathcal{E})$$
 $\forall t \in \mathbb{R}_+, \quad h'(t) - h(t) = -\varphi\left(\sqrt{t}\right).$

10. Donnons la solution générale, sur \mathbb{R}_+ de l'équation homogène (\mathcal{E}_0) associée à (\mathcal{E}) . On a

$$(E_0)$$
 $\forall t \in \mathbb{R}_+, \quad h'(t) - h(t) = 0.$

Posons $a: t \mapsto -1$. La fonction a est continue sur \mathbb{R}_+ et admet donc des primitives sur \mathbb{R}_+ dont l'une est donnée par $A: t \mapsto -t$. Conclusion, l'ensemble des solutions de (E_0) est donné par

$$\left| \mathscr{S}_0 = \left\{ \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ t & \mapsto & K e^t \end{array} \middle| K \in \mathbb{R} \right\} = \operatorname{Vect} \left(\begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ t & \mapsto & e^t \end{array} \right). \right|$$

Partie 3 : Série - approche numérique d'une intégrale

11. Etudions la convergence de la série de terme général $\frac{(-1)^n}{n!(2n+1)}$. Posons pour tout $n \in \mathbb{N}$, $u_n = \frac{(-1)^n}{n!(2n+1)}$. On a pour tout $n \in \mathbb{N}$,

$$0 \leqslant |u_n| = \frac{1}{n!(2n+1)} \leqslant \frac{1}{n!}.$$

La série $\sum_{n\in\mathbb{N}} \frac{1}{n!}$ converge en tant que série exponentielle de paramètre x=1. Donc par le théorème de comparaison des séries à termes positifs,

$$\sum_{n\in\mathbb{N}} |u_n| \text{ converge.}$$

Autrement dit, $\sum_{n\in\mathbb{N}}u_n$ converge absolument. Or la convergence absolue implique la convergence.

Conclusion,

$$\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n! (2n+1)}$$
 converge.

12. Pour tout réel t, montrons la convergence et calculons la somme totale de la série de terme général $\frac{(-1)^n t^{2n}}{n!}$. Soit $t \in \mathbb{R}$. Posons pour tout $n \in \mathbb{N}$, $v_n = \frac{(-1)^n t^{2n}}{n!}$, on a alors

$$v_n = \frac{\left(-t^2\right)^n}{n!},$$

on reconnait alors le terme général d'une série exponentielle de paramètre $x=-t^2.$ Par conséquent,

$$\sum_{n \in \mathbb{N}} \frac{(-1)^n t^{2n}}{n!} \text{ converge.}$$

De plus,

$$\sum_{n=0}^{+\infty} \frac{(-1)^n t^{2n}}{n!} = e^{-t^2}.$$

13. A l'aide de la formule de Taylor-Lagrange appliquée à la fonction exponentielle, montrons que pour tout réel t entre 0 et 1 et tout entier naturel n,

$$\left| e^{-t^2} - \sum_{k=0}^n \frac{(-1)^k t^{2k}}{k!} \right| \le \frac{t^{2n+2}}{(n+1)!}.$$

Soit $t \in [0;1]$ et $n \in \mathbb{N}$. Posons $x = -t^2$. La fonction $f: s \mapsto e^s$ est \mathscr{C}^{n+1} sur [0;x]. Donc par la formule de Taylor-Lagrange,

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x - 0)^{k} \right| \le \sup_{z \in [x;0]} \left| f^{(n)}(z) \right| \frac{|x - 0|^{n+1}}{(n+1)!}$$

Or pour tout $k \in [0; n+1]$, $f^{(k)} = f$ et donc $f^{(k)}(0) = 1$ et par croissance de la fonction exponentielle,

$$\sup_{z \in [x;0]} \left| f^{(n)}(z) \right| = \sup_{z \in [-t^2;0]} e^z = 1.$$

D'où

$$\left| e^{-t^2} - \sum_{k=0}^{n} \frac{1}{k!} (-t^2)^k \right| \le \frac{\left| -t^2 \right|^{n+1}}{(n+1)!}.$$

Conclusion,

$$\left| e^{-t^2} - \sum_{k=0}^n \frac{(-1)^k t^{2k}}{k!} \right| \le \frac{t^{2n+2}}{(n+1)!}.$$

14. Montrons que pour tout entier naturel n, $\left| \int_0^1 e^{-x^2} dx - \sum_{k=0}^n \frac{(-1)^k}{k!(2k+1)} \right| \le \frac{1}{(n+1)!(2n+3)}$. Soit $n \in \mathbb{N}$. Par la question précédente et la croissance de l'intégrale, car les bornes sont dans le bon sens,

$$\int_0^1 \left| e^{-t^2} - \sum_{k=0}^n \frac{(-1)^k t^{2k}}{k!} \right| \le \int_0^1 \frac{t^{2n+2}}{(n+1)!} dt.$$

Donc par l'inégalité triangulaire,

$$\left| \int_0^1 e^{-t^2} - \sum_{k=0}^n \frac{(-1)^k t^{2k}}{k!} dt \right| \le \int_0^1 \frac{t^{2n+2}}{(n+1)!} dt.$$

D'une part, par linéarité de l'intégrale,

$$\int_0^1 e^{-t^2} - \sum_{k=0}^n \frac{(-1)^k t^{2k}}{k!} dt = \int_0^1 e^{-t^2} dt - \sum_{k=0}^n \int_0^1 \frac{(-1)^k t^{2k}}{k!} dt$$

$$= \int_0^1 e^{-t^2} dt - \sum_{k=0}^n \left[\frac{(-1)^k t^{2k+1}}{k! (2k+1)} \right]_{t=0}^{t=1}$$

$$= \int_0^1 e^{-t^2} dt - \sum_{k=0}^n \frac{(-1)^k}{k! (2k+1)}.$$

D'autre part,

$$\int_0^1 \frac{t^{2n+2}}{(n+1)!} dt = \left[\frac{t^{2n+3}}{(n+1)!(2n+3)} \right]_{t=0}^{t=1} = \frac{1}{(n+1)!(2n+3)}.$$

Conclusion,

$$\left| \int_0^1 e^{-x^2} dx - \sum_{k=0}^n \frac{(-1)^k}{k! (2k+1)} \right| \le \frac{1}{(n+1)! (2n+3)}.$$

15. Montrons que $\int_0^1 e^{-x^2} dx = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k! (2k+1)}$. On a

$$\lim_{n \to +\infty} \frac{1}{(n+1)!(2n+3)} = 0.$$

Donc par la question précédente et le théorème d'encadrement,

$$\lim_{n \to +\infty} \left| \int_0^1 e^{-x^2} dx - \sum_{k=0}^n \frac{(-1)^k}{k! (2k+1)} \right| = 0$$

ou encore

$$\lim_{n \to +\infty} \left(\int_0^1 e^{-x^2} dx - \sum_{k=0}^n \frac{(-1)^k}{k! (2k+1)} \right) = 0$$

mais aussi

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k! (2k+1)} = \int_0^1 e^{-x^2} dx.$$

Conclusion,

$$\int_0^1 e^{-x^2} dx = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k! (2k+1)}.$$

16. Donnons un nombre rationnel r qui soit une valeur numérique approchée de $\int_0^1 e^{-x^2} dx$ à 10^{-3} près. Par la question 14. pour que

$$\left| \int_0^1 e^{-x^2} dx - \sum_{k=0}^n \frac{(-1)^k}{k! (2k+1)} \right| \le 10^{-3},$$

il suffit de prendre $n \in \mathbb{N}$ tel que

$$\frac{1}{(n+1)!(2n+3)} \le 10^{-3} = \frac{1}{1000}.$$

Pour n = 3, on a

$$\frac{1}{(n+1)!(2n+3)} = \frac{1}{24 \times 9} = \frac{1}{216} > \frac{1}{1000}$$

pour n=4,

$$\frac{1}{(n+1)!\,(2n+3)} = \frac{1}{120\times 11} = \frac{1}{1320} < \frac{1}{1000}.$$

Donc pour n = 4, on a

$$\left| \int_0^1 e^{-x^2} dx - \sum_{k=0}^n \frac{(-1)^k}{k! (2k+1)} \right| \le 10^{-3}.$$

Ainsi, pour

$$r = \sum_{k=0}^{4} \frac{(-1)^k}{k! (2k+1)} = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} + \frac{1}{24 \times 9}.$$

on a r une approximation rationnelle de $\int_0^1 e^{-x^2} dx$ à 10^{-3} . Conclusion,

$$r = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} + \frac{1}{216}.$$