

Interrogation 10 Equations différentielles d'ordre 1

Nom/Prénom:							
Note	:						
1. (a) Enoncer la proposition qui affirme que l'ensemble \mathscr{S}_0 des solutions de l'équation homogène est un espac vectoriel.						
(b) Définir un problème de Cauchy.						
(0	Exprimer la partie réelle, la partie imaginaire et le module en fonction du conjugué.						

2.	Déterminer les intervalles de résolution puis \mathscr{S}_0 l'ensemble des solutions de l'équation homogène (E_0) associée à $(E): \sqrt{1-x^2}\arcsin(x)y'(x)=y(x)+\arcsin(x)$, d'inconnue y une fonction dérivable.
	Justifier que l'équation $(E): y'-y=x^5\mathrm{e}^x$ admet des solutions sur $\mathbb R$ et les déterminer à l'aide de la méthode de variation de la constante.
	On pourra admettre que $y_0: x \mapsto e^x$ est une solution de l'équation homogène associée.
	On pourra admettre que $y_0: x \mapsto e^x$ est une solution de l'équation homogène associée.

4. Just	tifier que $f: x \mapsto$	$\frac{x+2}{x^2+3x+3}$ admet de	es primitives sur	k et les determi	ner.	
	-π/2·					
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} \mathrm{d}t$	$\mathrm{d}t.$ Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} \epsilon$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} \mathrm{d}t$	$\mathrm{d}t.$ Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} \mathrm{d}t$	$\mathrm{d}t.$ Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} \mathrm{d}t$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} \epsilon$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit	$I = \int_{\pi/3}^{\pi/2} \frac{1}{\sin(t)} dt$	dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.
5. Soit		dt. Justifier que I	existe et la calc	uler à l'aide du c	hangement de var	Table $x = \cos(t)$.