

Réponses de l'interrogation 17 Suites

1. (a) Donner une condition suffisante pour qu'une suite définie par récurrence $u_{n+1} = f(u_n)$ soit croissante et comment le démontre-t-on?

Solution. Soit $f: \mathbb{R} \to \mathbb{R}$ et $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ la suite définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. On suppose que f est croissante et que $u_1 \geqslant u_0$. Alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. On le démontre par récurrence bien sûr!

(b) Donner la forme explicite d'une suite récurrente linéaire d'ordre 2 dans le cas où le discriminant est strictement négatif.

Solution. Soient $(a,b) \in \mathbb{R}^2$ et $(u_n)_{n \in \mathbb{N}}$ la suite vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} = au_{n+1} + bu_n$. Soit Δ le discriminant de (E_c) : $r^2 - ar - b$. Si $\Delta < 0$, alors en notant $r_1 = r e^{i\theta}$ et $r_2 = r e^{-i\theta}$ les deux racines complexes de (E_c) ,

$$\exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \qquad u_n = r^n (\lambda \cos(n \theta) + \mu \sin(n \theta)).$$

(c) Définir la partie entière.

Solution. Pour tout $x \in \mathbb{R}$ il existe un unique entier $n \in \mathbb{Z}$ tel que $n \leqslant x < n+1$. Cet entier n est appelé partie entière de x : n = |x|.

2. On considère la suite définie par récurrence par $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2u_n + 35}$. On admet que la suite existe bien. On suppose que $(u_n)_{n \in \mathbb{N}}$ converge vers ℓ . Que dire de ℓ ? Solution. Conclusion,

$$\ell = 7.$$

3. Donner une expression explicite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=6,\ u_1=7$ et pour tout $n\in\mathbb{N},\ u_{n+2}=3u_{n+1}-2u_n$.

Solution. Conclusion,

$$\forall n \in \mathbb{N}, \quad u_n = 5 + 2^n.$$

4. Développer $\sin{(2a)}$ pour $a \in \mathbb{R}$ et en déduire la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$ définie par $\forall n \in \mathbb{N}, u_n = 2^{n+1}\sin{(\frac{\theta}{2^n})}$, avec $\theta \in \left]0; \frac{\pi}{2}\right[$.

Solution. Conclusion,

La suite
$$(u_n)_{n\in\mathbb{N}}$$
 est strictement croissante.

5. On pose $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n e^{u_n}}{3}$. On admet que pour tout $n \in \mathbb{N}$, $u_n \in]0;1]$. Montrer que $(u_n)_{n \in \mathbb{N}}$ converge et préciser sa limite. Solution. Conclusion,

La suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.