

Nom/Prénom:

Interrogation 28 Représentation matricielle

Not	e:	
1.	(a)	Donner la matrice d'une composition.
	(b)	Caractériser l'inversibilité d'une matrice.
	(c)	Enoncer le théorème fondamental de l'arithmétique.

2.	Soient $f: \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P & \mapsto & P(1)X^2 + P'(1)X + P''(1) \end{array}$ et $\mathscr{C} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. Calcule $\operatorname{mat}_{\mathscr{C}}(f)$.	er
		•
		•
		•
3.	Soit \mathscr{C} la base canonique de \mathbb{R}^2 , $e_1=(3,1)$, $e_2=(-2,5)$, $\mathscr{B}_1=(e_1,e_2)$, $e_1'=(2,1)$ et $e_2'=(1,-1)$ e $\mathscr{B}_2=(e_1',e_2')$. Justifier que \mathscr{B}_1 et \mathscr{B}_2 sont deux bases de \mathbb{R}^2 et déterminer la matrice de passage de \mathscr{B}_1 à \mathscr{B}_2	et
		•
		•

4. On considère $f \in \mathcal{L}\left(\mathbb{R}^3, \mathbb{R}^3\right)$ définit pour tout $(x, y, z) \in \mathbb{R}^3$ par

$$f\left(x,y,z\right)=\left(\frac{1}{3}\left(x-2y-6z\right),\frac{1}{3}\left(-x+2y-3z\right),\frac{1}{3}\left(-x-y\right)\right).$$

On note $\mathscr C$ la base canonique de $\mathbb R^3$, et $\mathscr B=\left(\left(1,-1,0\right),\left(3,0,-1\right),\left(2,1,1\right)\right)$. On admet que $\mathscr B$ est une base de $\mathbb R^3$. On donne $\mathrm{mat}_{\mathscr B}(\mathscr C)=\frac{1}{6}\begin{pmatrix}1&-5&3\\1&1&-3\\1&1&3\end{pmatrix}$. Déterminer $\mathrm{mat}_{\mathscr B}(f)$. 5. Soit $A=\begin{pmatrix}1&3&4\\2&2&4\\3&1&4\end{pmatrix}$ et f l'endomorphisme de $\mathbb{R}_2[X]$ canoniquement associé à A. Déterminer $\mathrm{Im}\,(A)$ et en déduire $\operatorname{rg}(A)$ et $\operatorname{Ker}(A)$.