

Correction de l'interrogation 07 Fonctions usuelles

- 1. (a) Enoncer la croissance comparée du logarithme en $+\infty$ /en 0, de l'exponentielle en $-\infty$ /en $+\infty$. Solution.
 - Soient a > 0 et b > 0. On a

$$\lim_{\substack{x \to 0 \\ x > 0}} x^b \left| \ln(x) \right|^a = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{\ln^a(x)}{x^b} = 0.$$

• Soient a > 0 et b > 0. On a

$$\lim_{x \to -\infty} |x|^b e^{ax} = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{e^{ax}}{x^b} = +\infty.$$

- (b) Enoncer la formule reliant les carrés des fonctions hyperboliques et celle sur arctan. *Solution*. On a les relations suivantes :
 - $\forall x \in \mathbb{R}, \operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$
 - $\forall x \in \mathbb{R}_+^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$
 - $\forall x \in \mathbb{R}_{-}^{*}$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$
- (c) Définir une fonction dérivable en a. Quel est le lien entre continuité et dérivabilité? Solution. Soient $a \in \mathbb{R}$, I un voisinage de a, $f \in \mathscr{F}(I,\mathbb{R})$. On a

$$f$$
 est dérivable en a \Leftrightarrow $\lim_{\substack{x \to a \\ x \neq a}} \frac{f(x) - f(a)}{x - a}$ existe dans \mathbb{R} .

En particulier

$$(f \text{ dérivable en } a) \Rightarrow (f \text{ continue en } a).$$

2. Simplifier au maximum $A = \ln \left(\ln \left(\sqrt{\exp \left(3 + \sqrt{5} \right)} \right) \right) + \exp \left(-\ln \left(\frac{2}{\ln \left(\left(3 - \sqrt{5} \right)^2 \right)} \right) \right)$. Solution. On a les égalités dans $\mathbb R$ suivantes :

$$A = \ln\left(\ln\left(\sqrt{\exp\left(3+\sqrt{5}\right)}\right)\right) + \exp\left(-\ln\left(\frac{2}{\ln\left(\left(3-\sqrt{5}\right)^2\right)}\right)\right)$$

$$= \ln\left(\frac{1}{2}\ln\left(\exp\left(3+\sqrt{5}\right)\right)\right) + \exp\left(\ln\left(\frac{\ln\left(\left(3-\sqrt{5}\right)^2\right)}{2}\right)\right)$$

$$= \ln\left(\frac{1}{2}\left(3+\sqrt{5}\right)\right) + \frac{\ln\left(\left(3-\sqrt{5}\right)^2\right)}{2}$$

$$= \ln\left(3+\sqrt{5}\right) - \ln(2) + \ln\left(3-\sqrt{5}\right)$$

$$= \ln\left(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\right) - \ln(2)$$

$$= \ln\left(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\right) - \ln(2)$$

$$= \ln\left(9-5\right) - \ln(2)$$

$$= \ln\left(4\right) - \ln(2)$$

$$= 2\ln(2) - \ln(2)$$

$$= \ln(2).$$

Conclusion,

$$A = \ln(2).$$

3. Soit $f: x \mapsto \ln\left(\arcsin\left(\frac{1}{x+2}\right)\right)$. Déterminer le domaine de dérivabilité de f puis dériver f. Solution. Soit $x \in \mathbb{R}$. On a les équivalences suivantes :

$$f \text{ est d\'erivable en } x \qquad \Leftrightarrow \qquad \begin{cases} \arcsin\left(\frac{1}{x+2}\right) > 0 \\ -1 < \frac{1}{x+2} < 1 \\ x+2 \neq 0 \end{cases} \qquad \Leftrightarrow \qquad \begin{cases} \frac{1}{x+2} > 0 \\ -1 < \frac{1}{x+2} < 1 \\ x+2 \neq 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} x+2 > 0 \\ x+2 > 1 \end{cases}$$

$$\Leftrightarrow \qquad x > -1.$$

Donc f est dérivable sur]-1; $+\infty[$. De plus, pour tout $x\in]-1$; $+\infty[$,

$$f'(x) = \frac{\left(\arcsin\left(\frac{1}{x+2}\right)\right)'}{\arcsin\left(\frac{1}{x+2}\right)} = \left(\frac{1}{x+2}\right)' \frac{1}{\sqrt{1 - \frac{1}{(x+2)^2}}} \frac{1}{\arcsin\left(\frac{1}{x+2}\right)}$$

$$= -\frac{1}{(x+2)^2} \sqrt{\frac{(x+2)^2}{x^2 + 4x + 4 - 1}} \frac{1}{\arcsin\left(\frac{1}{x+2}\right)}$$

$$= -\frac{1}{(x+2)^2} \frac{x+2}{\sqrt{x^2 + 4x + 3}} \frac{1}{\arcsin\left(\frac{1}{x+2}\right)} \qquad \text{car } x+2 > 0$$

$$= -\frac{1}{(x+2)\sqrt{x^2 + 4x + 3}} \frac{1}{\arcsin\left(\frac{1}{x+2}\right)}.$$

Conclusion,

$$f$$
 est dérivable sur $]-2$; $+\infty[$

et

$$\forall x \in]-2; +\infty[, f'(x) = -\frac{1}{(x+2)\sqrt{x^2+4x+3}\arcsin(\frac{1}{x+2})}.$$

4. Calculer $\lim_{x \to +\infty} \sqrt{\frac{x^3 \arctan(\operatorname{ch}(x))}{1 + \operatorname{sh}(x)}}$.

Solution. Soit x > 0, on a

$$\sqrt{\frac{x^3\arctan\left(\operatorname{ch}(x)\right)}{1+\operatorname{sh}(x)}} = \sqrt{\frac{x^3\arctan\left(\operatorname{ch}(x)\right)}{1+\frac{\mathrm{e}^x-\mathrm{e}^{-x}}{2}}} = \sqrt{\frac{2x^3}{\mathrm{e}^x}\times\frac{\arctan\left(\operatorname{ch}(x)\right)}{1+2\,\mathrm{e}^{-x}-\mathrm{e}^{-2x}}}.$$

Or puisque $\lim_{x\to +\infty} \operatorname{ch}(x) = +\infty$ et que $\lim_{u\to +\infty} \arctan(u) = \frac{\pi}{2}$, par composition,

$$\lim_{x \to +\infty} \arctan\left(\operatorname{ch}(x)\right) = \frac{\pi}{2}.$$

De plus,

$$\lim_{x \to +\infty} 1 + 2e^{-x} - e^{-2x} = 1.$$

Enfin, par croissance comparée,

$$\lim_{x \to +\infty} \frac{2x^3}{e^x} = 0.$$

Donc par produit et quotient,

$$\lim_{x \to +\infty} \frac{2x^3}{e^x} \frac{\arctan(\operatorname{ch}(x))}{1 + 2e^{-x} - e^{-2x}} = 0 \times \frac{\pi}{2} = 0.$$

Conclusion, par composition avec la racine carrée,

$$\lim_{x \to +\infty} \sqrt{\frac{x^3 \arctan\left(\operatorname{ch}(x)\right)}{1 + \operatorname{sh}(x)}} = 0.$$

5. Démontrer que l'équation $\arctan(3x) + \arctan(10x) = \frac{3\pi}{4}$ admet au plus une solution dans \mathbb{R} et préciser l'unique valeur du réel possiblement solution.

Solution. Soit $x \in \mathbb{R}$. On a les implications suivantes :

$$\arctan(3x) + \arctan(10x) = \frac{3\pi}{4} \qquad \Rightarrow \qquad \tan\left(\arctan(3x) + \arctan(10x)\right) = \tan\left(\frac{3\pi}{4}\right) = -1$$

$$\Rightarrow \qquad \frac{\tan\left(\arctan(3x) + \tan\left(\arctan(10x)\right)\right)}{1 - \tan\left(\arctan(3x)\right) \tan\left(\arctan(10x)\right)} = -1$$

$$\Rightarrow \qquad \frac{3x + 10x}{1 - 3x \times 10x} = -1$$

$$\Rightarrow \qquad \frac{13x}{1 - 30x^2} = -1$$

$$\Rightarrow \qquad 13x = -1 + 30x^2$$

$$\Rightarrow \qquad 30x^2 - 13x - 1 = 0.$$

Soit Δ le discriminant associé, $\Delta=169+120=289=17^2$. Par conséquent les racines associées sont $r_1=\frac{13-17}{60}=-\frac{4}{60}=-\frac{1}{15}$ et $r_2=\frac{13+17}{60}=\frac{30}{60}=\frac{1}{2}$. Ainsi,

$$\arctan(3x) + \arctan(10x) = \frac{3\pi}{4}$$
 \Rightarrow $x = -\frac{1}{15}$ OU $x = \frac{1}{2}$.

Or on observe que si $x=-\frac{1}{15}$ alors 5x<3x<0 et donc $\arctan(3x)+\arctan(10x)<0<\frac{3\pi}{4}$. Par conséquent, $-\frac{1}{15}$ n'est pas solution. Conclusion,

L'équation admet au plus une solution et si celle-ci existe elle vaut nécessairement $x = \frac{1}{2}$.