

Interrogation 10 d'entrainement Equations différentielles d'ordre 1

1. Restituer le cours.

- 1.1 En
oncer le théorème donnant l'ensemble \mathcal{S}_0 des solutions d'une équation homogène d'ordre 1.
- 1.2 En
oncer la proposition qui affirme que l'ensemble \mathcal{S}_0 des solutions de l'équation homogène est un espace vectoriel
- 1.3 Enoncer le théorème donnant l'ensemble $\mathcal S$ des solutions d'une équation différentielle d'ordre 1 à partir d'une solution « particulière ».
- 1.4 Enoncer le principe de superposition.
- 1.5 Définir un problème de Cauchy.

Révisions

- 1.6 Exprimer la partie réelle, la partie imaginaire et le module en fonction du conjugué.
- 1.7 Enoncer la formule donnant le carré du module d'une somme.
- 1.8 Enoncer les inégalités triangulaires.
- 1.9 Enoncer les formules d'Euler.
- 1.10 Enoncer la formule de Moivre.
- 2. Déterminer les solutions d'une équation différentielle homogène d'ordre 1. Déterminer les intervalles de résolution puis \mathscr{S}_0 l'ensemble des solutions de l'équation homogène (E_0) associée à (E) d'inconnue y une fonction dérivable.
 - 2.1 (E): $y'(t) 5t^2y(t) = 3t(y(t) + 2)$.
 - 2.2 (E) : $\operatorname{ch}^4(s)y'(s) + \operatorname{sh}(s)y(s) = 1$.
 - 2.3 (E): $(u^2 + 7)y'(u) = 5 3uy(u)$.
 - 2.4 (E): $\sqrt{1-x^2}y'(x) = y(x) + 8$.
 - 2.5 (E): $y(r)\sin(r) + \cos(r)y'(r) = 0$.
 - 2.6 (E): $(a^3 + 3a^2 + 7a + 8) y'(a) + (3a^2 + 6a + 7) y(a) = 8a^3 5a^2 + 2a + 4 \text{ sur } I = \mathbb{R}_+$.
 - 2.7 (E): $t\sqrt{\ln(t)}y'(t) + \ln(t) + y(t) = 0$.
 - 2.8 (E): $\cos^2(s)y'(s) + \sin(s)y(s) = -y'(s)$.
 - 2.9 (E): $\sqrt{1 u^2}y'(u) + \arcsin(u)y(u) = \arccos(u)$.
 - 2.10 (E): $y'(x) + e^{x+e^x} y(x) = e^{2x}$.

Pour les gourmands, en voici d'autres :

- 2.11 (E): $y'(r) + 8r\sqrt{4r^2 1}y(r) = 0$.
- 2.12 (E): $\frac{y'(a)+9y(a)}{9} = -a^2y'(a)$.
- 2.13 (E): $\theta \ln (\theta) y'(\theta) = y(\theta) + \sin (\theta)$.
- 2.14 (E): $t^6y'(t) + t^2y(t) = 5t y'(t)$.
- 2.15 (E): $s(1 + \ln^2(s))y'(s) + y(s) = \ln(s)$.
- 2.16 (E): $\sqrt{u}y'(u) + e^{\sqrt{3u}}y(u) = 5u^2 6$.

3. Savoir appliquer la méthode de variation de la constante.

3.1 Justifier que l'équation $(E): y'(x) + \frac{2x}{1-x^2}y(x) = \sqrt{1-x^2}$ admet des solutions sur I=]-1;1[et les déterminer à l'aide de la méthode de variation de la constante.

On pourra admettre que $y_0: x \mapsto 1-x^2$ est une solution de l'équation homogène associée.

3.2 Justifier que l'équation $(E): y'(x) + \frac{1}{1+x}y(x) = 1 + \ln(x)$ admet des solutions sur $I = \mathbb{R}_+^*$ et les déterminer à l'aide de la méthode de variation de la constante.

On pourra admettre que $y_0: x \mapsto \frac{1}{1+x}$ est une solution de l'équation homogène associée. Intégrer $x \mapsto x \ln(x)$ par une intégration par parties.

3.3 Justifier que l'équation $(E): y'(x) - 2y(x) = \cos(x)$ admet des solutions sur $I = \mathbb{R}$ et les déterminer à l'aide de la méthode de variation de la constante.

On pourra admettre que $y_0: x \mapsto e^{2x}$ est une solution de l'équation homogène associée.

3.4 Justifier que l'équation $(E): y'(x) + \frac{1}{x(x+1)}y(x) = (x+1)\arctan(x)$ admet des solutions sur $I = \mathbb{R}_+^*$ et les déterminer à l'aide de la méthode de variation de la constante.

On pourra admettre que $y_0: x \mapsto \frac{x+1}{x}$ est une solution de l'équation homogène associée.

3.5 Justifier que l'équation $(E): y'(x) + \frac{1}{1+x}y(x) = \sin(x)$ admet des solutions sur $I =]-1; +\infty[$ et les déterminer à l'aide de la méthode de variation de la constante.

On pourra admettre que $y_0: x \mapsto \frac{1}{1+x}$ est une solution de l'équation homogène associée.

4. Savoir intégrer l'inverse d'un trinôme.

- 4.1 Justifier que $f: x \mapsto \frac{1}{3x^2-21x+30}$ admet des primitives sur \mathbb{R}_-^* et les déterminer.
- 4.2 Justifier que $f: x \mapsto \frac{x^3}{x+2}$ admet des primitives sur]-2; $+\infty$ [et les déterminer.
- 4.3 Justifier que $f:x\mapsto \frac{x+2}{x^2+x+4}$ admet des primitives sur $\mathbb R$ et les déterminer.
- 4.4 Justifier que $f: x \mapsto \frac{1}{x^3 + 3x^2 + 2x}$ admet des primitives sur \mathbb{R}_+^* et les déterminer.
- 4.5 Justifier que $f: x \mapsto \frac{6x^2-11x+24}{2x^2-4x+8}$ admet des primitives sur $\mathbb R$ et les déterminer.

5. Savoir faire un changement de variable.

- 5.1 Justifier que $I = \int_0^{\frac{\pi}{2}} \sin(t) \cos^5(t) dt$ existe et calculer I à l'aide du changement de variable $u = \cos(t)$.
- 5.2 Justifier que $f: x \mapsto x^2 \sqrt{1-x^2}$ admet des primitives sur [-1; 1] et les déterminer à l'aide du changement de variable $x = \cos(u)$.
- 5.3 Justifier que $I = \int_{\frac{1}{2}}^2 \arctan\left(t\right) \left(1 + \frac{1}{t^2}\right) \mathrm{d}t$ existe et calculer I à l'aide du changement de variable $u = \frac{1}{t}$.
- 5.4 Justifier que $f: x \mapsto \frac{e^{2x}}{e^x + 1}$ admet des primitives sur \mathbb{R} et les déterminer à l'aide du changement de variable $u = e^t$.
- 5.5 Justifier que $I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos(x)} dx$ existe et calculer I à l'aide du changement de variable $t = \tan\left(\frac{x}{2}\right)$.