

Interrogation de révision 07 d'entrainement Ensembles et applications, continuité et dérivabilité

1. Restituer le cours : ensembles et applications

- 1.1 Enoncer la distribution de l'intersection sur l'union et réciproquement puis énoncer les lois de Morgan pour les ensembles.
- 1.2 Définir l'ensemble image et l'ensemble réciproque.
- 1.3 Définir l'injectivité et la surjectivité.
- 1.4 Caractériser la bijectivité d'une fonction par l'existence d'un inverse (Prop II.16).

2. Restituer le cours : continuité et dérivabilité

- 2.1 Enoncer le théorème d'encadrement.
- 2.2 Enoncer la caractérisation séquentielle de la limite.
- 2.3 Enoncer le théorème des bornes atteintes.
- 2.4 Enoncer l'identité des accroissements finis.

3. Manipuler les applications

- 3.1 Soient E, F et G trois ensembles $f \in \mathscr{F}(E,F)$ et $g \in \mathscr{F}(F,G)$. Montrer que $g \circ f$ est surjective implique que g est surjective.
- 3.2 Soient E, F et G trois ensembles $f \in \mathscr{F}(F,G)$ injective. Montrer que pour tout $(g,h) \in \mathscr{F}(E,F)$, on a $f \circ g = f \circ h \Rightarrow g = h$.
- 3.3 Soient E, F deux ensembles $f \in \mathscr{F}(E,F)$ injective. Montrer que pour tout $(A,B) \in \mathscr{P}(E)^2$, $f(A \cap B) = f(A) \cap f(B)$.
- 3.4 Soient E, F deux ensembles $f \in \mathscr{F}(E,F)$ surjective. Montrer que pour tout $A \in \mathscr{P}(F)$, $\overline{f(A)} \subseteq f(\overline{A})$.
- 3.5 Soient E, F et G trois ensembles $f \in \mathscr{F}(E,F)$ et $g \in \mathscr{F}(F,G)$. Montrer que si $g \circ f$ est surjective et si g est injective alors f est surjective.

4. Théorème de prolongement C^1

- 5.1 Montrer que $f: x \mapsto \begin{cases} x\sqrt{|x|} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ est \mathscr{C}^1 sur \mathbb{R} et préciser f'(0).
- 5.2 Montrer que $f: x \mapsto \begin{cases} e^{-\frac{1}{x^4}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ est \mathscr{C}^1 sur \mathbb{R} et préciser f'(0).
- 5.3 Montrer que $f: x \mapsto \begin{cases} \frac{\sinh(x)}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ est \mathscr{C}^1 sur \mathbb{R} et préciser f'(0).
- 5.4 Montrer que $f: x \mapsto \begin{cases} e^{-\frac{1}{|x|}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ est \mathscr{C}^1 sur \mathbb{R} et préciser f'(0).
- 5.5 Montrer que $f: x \mapsto \begin{cases} \frac{\operatorname{ch}(x) 1}{\sqrt{x}} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$ est \mathscr{C}^1 sur \mathbb{R}_+ et préciser f'(0).