

Correction Hiver 02 Séries et continuité-dérivabilité

Solution de l'exercice 1 On sait que $\sin(u) \underset{u\to 0}{\sim} u$. Donc $2\sin\left(\frac{1}{n^5}\right) \underset{n\to +\infty}{\sim} \frac{2}{n^5}$. D'autre part,

$$1 - \cos\left(\frac{2}{n^2}\right) \underset{n \to +\infty}{=} 1 - \left(1 - \frac{4}{2n^4} + o\left(\frac{1}{n^4}\right)\right) \underset{n \to +\infty}{=} \frac{2}{n^4} + o\left(\frac{1}{n^4}\right) \underset{n \to +\infty}{\sim} \frac{2}{n^4}.$$

Donc par quotient,

$$u_n \underset{n \to +\infty}{\sim} \frac{2/n^5}{2/n^4} = \frac{1}{n}.$$

La série $\sum_{n\in\mathbb{N}^*}\frac{1}{n}$ diverge en tant que série harmonique (ou série de Riemann d'exposant $\alpha=1\leqslant 1$). Or

 $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ et pour tout $n \geqslant 1$, $\frac{1}{n} > 0$. Conclusion, par le théorème des équivalents de séries numériques à termes positifs,

$$\sum_{n \in \mathbb{N}^*} u_n \text{ diverge.}$$

Solution de l'exercice 2

1. En tant que quotient de fonctions continues dont le dénominateur ne s'annule pas sur \mathbb{R}^* , on en déduit directement que f est continue sur \mathbb{R}^* . Etudions la continuité en 0. On sait que f(0) = 1. Calculons la limite quand $x \to 0$, $x \neq 0$. On a les égalités asymptotiques suivantes :

$$e^{x} \underset{x \to 0}{=} 1 + x + o(x).$$

Donc

$$e^{x} - 1 = x + o(x) \sim x$$

Par quotient d'équivalents, on obtient que

$$f(x) \underset{\substack{x \to 0 \\ x \neq 0}}{\sim} \frac{x}{x} = 1.$$

Autrement dit

$$\lim_{\substack{x \to 0 \\ x \neq 0}} f(x) = 1 = f(0).$$

Donc la fonction f est continue en 0.

Conclusion:

la fonction
$$f$$
 est continue sur \mathbb{R} .

NB: on pouvait reconnaitre le taux d'accroissement de la fonction exponentielle pour dire que $\frac{e^x-1}{x} \to \exp'(0) = 1$ quand $x \to 0$ et que par passage à l'inverse, $f(x) \to 1$ quand $x \to 0$.

- 2. La fonction f est \mathscr{C}^1 (et même \mathscr{C}^{∞}) sur \mathbb{R}^* comme quotient de fonctions \mathscr{C}^1 (et même \mathscr{C}^{∞}) dont le dénominateur ne s'annule pas sur \mathbb{R}^* . Etudions le comportement de f en 0. On souhaite appliquer le théorème de prolongement de fonction de classe \mathscr{C}^1 .
 - La fonction f est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* .

• Pour tout $x \in \mathbb{R}^*$, on a de plus

$$f'(x) = \frac{e^x - 1 - x e^x}{(e^x - 1)^2} = \frac{e^x (1 - x) - 1}{(e^x - 1)^2}.$$

Or

$$e^{x} (1 - x) - 1 = \underset{x \to 0}{=} \left(1 + x + \frac{x^{2}}{2} + o\left(x^{2}\right) \right) (1 - x) - 1$$
$$= \underset{x \to 0}{=} 1 + x + \frac{x^{2}}{2} + o\left(x^{2}\right) - x - x^{2} + o\left(x^{2}\right) - 1$$
$$= \underset{x \to 0}{=} -\frac{x^{2}}{2} + o\left(x^{2}\right).$$

Donc

$$e^{x}(1-x)-1 \underset{x\to 0}{\sim} -\frac{x^{2}}{2}.$$

De plus $e^x - 1 \underset{x \to 0}{\sim} x$ et donc par élévation au carré $(e^x - 1)^2 \underset{x \to 0}{\sim} x^2$. Ainsi par quotient d'équivalents,

$$f'(x) \underset{\substack{x \to 0 \\ x \neq 0}}{\sim} \frac{-\frac{x^2}{2}}{x^2} = -\frac{1}{2}.$$

Autrement dit $\lim_{\substack{x\to 0\\x\neq 0}} f'(x)$ existe et vaut -1/2.

Des deux points précédents, on en déduit à l'aide du théorème de prolongement des fonctions de classe \mathscr{C}^1 , que f est \mathscr{C}^1 en 0 et de plus $f'(0) = -\frac{1}{2}$.

La fonction f est \mathscr{C}^1 sur \mathbb{R}^* et en 0 donc

$$f$$
 est \mathscr{C}^1 sur \mathbb{R} .