

Correction Hiver 06 Suites et séries

Solution de l'exercice 1

1. Posons pour tout $n \in \mathbb{N}$,

$$\mathscr{P}(n)$$
: « u_n existe et $u_n \in U$ ».

Procédons par récurrence.

Initialisation. Si n=0, alors $u_0=\frac{1}{2}$ existe et $u_0\in\left[\frac{1}{2};\frac{3}{4}\right]=U$. Donc $\mathscr{P}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$. Soit $n \in \mathbb{N}$. Montrons que $\mathscr{P}(n) \Rightarrow \mathscr{P}(n+1)$. Supposons $\mathscr{P}(n)$ vraie i.e. u_n existe et $u_n \in U$. Montrons que $\mathscr{P}(n+1)$ est vraie. Par hypothèse de récurrence, $\frac{1}{2} \leqslant u_n \leqslant \frac{3}{2}$. Alors

$$2 - \frac{1}{2} \geqslant 2 - u_n \geqslant 2 - \frac{3}{2} \qquad \Leftrightarrow \qquad \frac{3}{2} \geqslant 2 - u_n \geqslant \frac{1}{2}.$$

Donc $u_{n+1} = \sqrt{2 - u_n}$ existe. De plus, par croissance de la fonction racine carrée,

$$\sqrt{\frac{1}{2}} \leqslant \sqrt{2 - u_n} \leqslant \sqrt{\frac{3}{2}}.$$

Or $\frac{3}{2} > 1$ donc $\sqrt{\frac{3}{2}} \leqslant \frac{3}{2}$ et $\frac{1}{2} < 1$ donc $\sqrt{\frac{1}{2}} \geqslant \frac{1}{2}$. D'où,

$$\frac{1}{2} \leqslant u_{n+1} = \sqrt{2 - u_n} \leqslant \frac{3}{2}$$

i.e. $u_{n+1} \in U$. On a donc bien montré $\mathscr{P}(n+1)$.

Conclusion, pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie.

Finalement,

la suite
$$(u_n)_{n\in\mathbb{N}}$$
 est bien définie et pour tout $n\in\mathbb{N}, u_n\in U=\left[\frac{1}{2};\frac{3}{4}\right]$.

2. On note que la fonction f est définie sur $]-\infty$; 2] et donc sur $U=\left\lfloor\frac{1}{2};\frac{3}{2}\right\rfloor\subseteq]-\infty$; 2]. La fonction f est de plus dérivable sur $]-\infty$; 2[. ATTENTION!!!! la racine carrée n'est pas dérivable en 0 d'où la nécessité d'ouvrir en 2. Donc f est dérivable sur U et

$$\forall x \in U, \qquad f'(x) = \frac{-1}{2\sqrt{2-x}}.$$

Or pour tout $x \in U$, $\frac{1}{2} \leqslant 2 - x \leqslant \frac{3}{2}$ puis $\frac{1}{\sqrt{2}} \leqslant \sqrt{2 - x} \leqslant \sqrt{\frac{3}{2}}$. Ainsi, $0 < \frac{1}{\sqrt{2 - x}} \leqslant \sqrt{2}$. Par conséquent,

$$\forall t \in U, \qquad |f'(t)| \leqslant \frac{\sqrt{2}}{2} \qquad \leftarrow ind\acute{e}pendant \ de \ t \, !$$

Soit $(x,y) \in U^2$, $x \neq y$. La fonction f est continue sur [x;y] ou [y;x] (car elle l'est sur U) et dérivable sur [x;y] ou [y;x] (car elle l'est sur U). Donc par le théorème des accroissements finis,

$$\exists t \in]x; y[\text{ ou }]y; x[, \qquad f(x) - f(y) = f'(t)(x - y).$$

Puisque $t \in [x;y] \subseteq U$, par ce qui précède

$$|f(x) - f(y)| \le |f'(t)| |x - y| \le \frac{\sqrt{2}}{2} |x - y|.$$

Ce résultat reste vrai si x = y. On en conclut donc que

la fonction
$$f$$
 est $\frac{\sqrt{2}}{2}$ -lipschitzienne sur U .

3. Soit $x \in U$. On a les équivalences suivantes :

$$x = f(x)$$
 \Leftrightarrow $x = \sqrt{2-x}$ \Leftrightarrow $x^2 = 2-x$ $\operatorname{car} x \geqslant \frac{1}{2} \geqslant 0$ \Leftrightarrow $x^2 + x - 2 = 0$.

Soit Δ le discriminant de X^2+X-2 . On a $\Delta=1+8=9$. Donc les racines associées sont $\frac{-1+3}{2}=1$ et $\frac{-1-3}{2}=-2$. Or $-2\notin U$ et $1\in U$. Conclusion,

la fonction f admet un unique point fixe dans U qui est x = 1.

4. Puisque f est $\frac{\sqrt{2}}{2}$ -lipschitzienne sur U, pour tout $n \in \mathbb{N}$, en prenant $x = u_n \in U$ et $y = 1 \in U$, alors on a

$$|f(u_n) - f(1)| \leq \frac{\sqrt{2}}{2} |u_n - 1|.$$

Or $f(u_n) = u_{n+1}$ et f(1) = 1. D'où

$$\forall n \in \mathbb{N}, \qquad |u_{n+1} - 1| \leqslant \frac{\sqrt{2}}{2} |u_n - 1|.$$

Ceci étant vrai pour tout $n \in \mathbb{N}$, on peut le reformuler de la façon suivante (petit glissement d'indice) :

$$\forall n \geqslant 1, \qquad |u_n - 1| \leqslant \frac{\sqrt{2}}{2} |u_{n-1} - 1|$$

Puis,

$$\forall n \geqslant 2, \qquad |u_n - 1| \leqslant \frac{\sqrt{2}}{2} |u_{n-1} - 1| \leqslant \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} |u_{n-2} - 1| = \left(\frac{\sqrt{2}}{2}\right)^2 |u_{n-2} - 1|.$$

On retrouve une suite « sous-géométrique ». Par une récurrence, on montre alors que

$$\forall n \in \mathbb{N}, \qquad |u_n - 1| \leqslant \left(\frac{\sqrt{2}}{2}\right)^n |u_0 - 1| = \left(\frac{\sqrt{2}}{2}\right)^n \left|\frac{1}{2} - 1\right| = \frac{1}{2} \left(\frac{\sqrt{2}}{2}\right)^n.$$

Or $\frac{\sqrt{2}}{2} \in]0$; 1[, donc $\lim_{n \to +\infty} \frac{1}{2} \left(\frac{\sqrt{2}}{2}\right)^{n-1} = 0$. Donc par le théorème d'encadrement, on en déduit que

$$\lim_{n \to +\infty} |u_n - 1| = 0.$$

Autrement dit, la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 1 :

$$\lim_{n \to +\infty} u_n = 1.$$

5. Puisque la **suite** $(u_n)_{n\in\mathbb{N}}$ converge vers $1\neq 0$, alors on en déduit que $\sum_{n\in\mathbb{N}} u_n$ diverge grossièrement et donc

la série
$$\sum_{n\in\mathbb{N}} u_n$$
 diverge.

Posons pour tout $n \in \mathbb{N}$, $v_n = |u_n - 1|$. Dans la question précédente, on a montré que

$$\forall n \in \mathbb{N}, 0 \leqslant v_n \leqslant \frac{1}{2} \left(\frac{\sqrt{2}}{2}\right)^n.$$

Or la série $\sum_{n\in\mathbb{N}} \frac{1}{2} \left(\frac{\sqrt{2}}{2}\right)^n$ converge en tant que série géométrique de raison $q=\frac{\sqrt{2}}{2}\in]-1;1[$. Donc par le théorème de comparaison de séries à termes positifs,

la série
$$\sum_{n\in\mathbb{N}} |u_n-1|$$
 converge.