

TD13 Ensembles et applications

Ensembles

Exercice 1 Soient E un ensemble et $A,B,C\in\mathscr{P}(E)$. Montrer que

1.
$$A \subseteq B \Leftrightarrow A \cup B = B$$

$$2. \ A \cap B = A \cup B \qquad \Rightarrow \qquad A = B$$

3.
$$A \cup B = A \cap C$$
 \Leftrightarrow $B \subset A \subset C$

Exercice 2 Soit E un ensemble et $a \in E$. Déterminer $\mathscr{P}(\mathscr{P}(\{a\}))$.

Exercice 3 Soit E un ensemble. Montrer par contraposition les assertions suivantes.

1.
$$\forall A, B \in \mathcal{P}(E) \quad (A \cap B = A \cup B) \Rightarrow A = B,$$

2.
$$\forall A, B, C \in \mathcal{P}(E) \quad ([A \cap B = A \cap C] \land [A \cup B = A \cup C]) \Rightarrow B = C.$$

Exercice 4 Soient E un ensemble et $A, B, C \in \mathcal{P}(E)$. Montrer que

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

Exercice 5 Soient E un ensemble et $A, B \in \mathscr{P}(E)$. Montrer que $\overline{A} \setminus \overline{B} = B \setminus A$.

Exercice 6 Déterminer chacun des ensembles suivants.

$$I_{1} = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^{2}} \right], \qquad I_{2} = \bigcap_{n=1}^{+\infty} \left[-2 - \frac{1}{n}, 4 + n^{2} \right]$$

$$I_{3} = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right], \qquad I_{4} = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right]$$

Exercice 7 Soient $A, B \subset E$. Résoudre les équations à l'inconnue $X \subset E$

- 1. $A \cup X = B$.
- 2. $A \cap X = B$.

Applications

Exercice 8 Soient f et g les éléments de $\mathscr{F}(\mathbb{N}, \mathbb{N})$ définis pour tout $n \in \mathbb{N}$ par :

$$f(n) = n + 1; \qquad g(n) = \begin{cases} 0 & \text{si } n = 0\\ n - 1 & \text{si } n \geqslant 1 \end{cases}$$

- 1. Etudier l'injectivité et la surjectivité de ces applications.
- 2. Déterminer $g \circ f$ et $f \circ g$.

Exercice 9 Soient A, B deux parties de E. Démontrer que les fonctions suivantes sont des fonctions caractéristiques et déterminer l'ensemble qu'elles caractérisent.

1.
$$\min (\mathbb{1}_A, \mathbb{1}_B)$$

2.
$$\max(\mathbb{1}_A, \mathbb{1}_B)$$

3.
$$\mathbb{1}_A + \mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_B$$

Exercice 10 Soit $f \in \mathscr{F}(E, F)$ et $A \subseteq E$.

- 1. Montrer que si f est injective alors $f(\overline{A}) \subseteq \overline{f(A)}$.
- 2. Montrer que si f est surjective alors $\overline{f(A)} \subseteq f(\overline{A})$.

Exercice 11 Soient f une application de E dans F et $A \subseteq E$, $B \subseteq F$. Montrer que

$$f(A \cap f^{-1}(B)) = f(A) \cap B.$$

Exercice 12 Soient E, F et G trois ensembles, $f \in \mathscr{F}(E,F)$, $g \in \mathscr{F}(F,G)$. Démontrer les assertions suivantes.

- 1. Si $g \circ f$ est injective alors f est injective.
- 2. Si $g \circ f$ est surjective alors g est surjective.
- 3. Si $g \circ f$ est injective et f surjective alors g est injective.
- 4. Si $g \circ f$ est surjective et g injective alors f est surjective.

Exercice 13 Soit E un ensemble et $f \in \mathscr{F}(E)$ telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Exercice 14 Soit X un ensemble. Montrer que l'application

$$\Phi: \begin{array}{ccc} \mathcal{P}(X) & \to & \mathcal{F}(X, \{0, 1\}) \\ A & \mapsto & \mathbb{1}_{A} \end{array}$$

est bijective.

Exercice 15 Soient $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives alors f, g et h le sont également.

Exercice 16 Soient $A, B \subset E$ et $f : \mathscr{P}(E) \to \mathscr{P}(A) \times \mathscr{P}(B); X \mapsto (X \cap A, X \cap B).$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Donner une condition nécessaire et suffisante pour que f soit bijective. Préciser dans ce cas f^{-1} .

Exercice 17 Soit un ensemble E et deux parties A et B de E. On désigne par $A \triangle B$ l'ensemble $(A \cup B) \setminus (A \cap B)$. Dans les questions ci-après il pourra être commode d'utiliser la notion de fonction caractéristique.

- 1. Démontrer que $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- 2. Démontrer que pour toutes les parties $A,\ B,\ C$ de E on a $(A\triangle B)\triangle C=A\triangle (B\triangle C).$
- 3. Démontrer qu'il existe une unique partie X de E telle que pour toute partie A de E, $A \triangle X = X \triangle A = A$.
- 4. Démontrer que pour toute partie A de E, il existe une partie A' de E et une seule telle que $A \triangle A' = A' \triangle A = X$.

Exercice 18 Soient $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A$. Montrer que si $h \circ g \circ f$ et $g \circ f \circ h$ sont injectives et $f \circ h \circ g$ surjective alors f, g et h sont bijectives.

Exercice 19 Donner des exemples d'applications de \mathbb{R} dans \mathbb{R} , puis de \mathbb{R}^2 dans \mathbb{R} , injective et non surjective, puis surjective et non injective.