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Chapitre XII : Analyse Asymptotique

Dans tout ce paragraphe K désigne R ou C, I un intervalle de R d’intérieur non vide i.e. ni vide ni un singleton. On
note R = RU {400} U {—o0}. On dit que I est un voisinage de a € R = R U {400} U {—00} si a € I ou a = sup({)
ou a = inf(I).
I Négligeabilité - Rappel
1.1 Définition

Définition I.1

 Fonctions : Soient a € R, I un voisinage de a et f et g € .% (I,K). On suppose que Vz € I, g (x) # 0. On dit
que f est négligeable devant g en a, noté f(x) = o(g(x)) ou encore f(x) < g(x) si et seulement si
r—a T—ra

lim /(@)

=0.
a—a g (x)

o Suites : Soient (un),cy €t (Vn),cn € KN. On suppose que Vn € N, v,, # 0. On dit que (Un),cn est négligeable

devant (vy),cy, DOté up, = o(vy,) ou encore u, <K vy, siet seulement si
n—-+oo n—-4+oo

. Unp
lim — =0
n——+4oo Un

Remarque 1 : Il n’est pas indispensable de supposer g (ou (vy),,cy) jamais nul. Une définition plus formelle permet
de traiter le cas ot g (ou (v,),y) s’annule mais cette définition est bien plus lourde et souvent peu pratique pour
notre usage. La voici : il existe € : I — K telle que Vx € I, f(z) = e(x)g(z) et telle que e(x) — 0.

Tr—a

Remarque 2 :
e Pour une suite la variable n tend nécessairement vers +oco. Ce n’est pas forcément le cas pour les fonctions.

« Dans la définition de la négligeabilité pour les fonctions, a € R n’est pas nécessairement un élément de I et peut
méme étre égal a +oo.

o La négligeabilité f(z) o(g(x)) est aussi parfois notée f = o, (g) ou f(x) = 0p—a (9(x)).

ZL’i(l
Remarque 3 : IMPORTANT : on a toujours :
f(z) = o(1) & lim f(x) =0

T—a T—a
b ) e ()0 =0
Exemple 4 :
2 4 4 2 1 1
1. x?2 = o(a:), 2. z* = o(x), 3. 5 = ol=),
T—+00 z—0 Te x—+00 T
1 1
—_ = JE— — €z — x
4. xmaoo(:ﬁ)' 5. xx_>+ooo(e ) 6. xzﬁoo(e )
) 1 1
7. 0n = o(n ), 8. 2" = o(3"), 9. 5 = ol—),
n—+4o0o n—4oo n< n—-+4oo n

Interprétation. Les petits o permettent de formaliser ’idée suivant laquelle les suites ou les fonctions en un point
ont une « vitesse » de convergence et de comparer ces vitesses. Par exemple :
o Si deux fonctions f, g converge vers 0 en a et si f (x) S0 (g(x)), on dira que la fonction f converge plus vite
vers 0 que la fonction g en a.
» De méme si deux suites (un),, oy €t (Un), oy convergent vers 0, et siu, = o0(vy), on dira que la suite (uy),, cy

n—-+oo

converge plus vite vers 0 que (vy,),,cy-
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o A linverse, si deux fonctions f, g tendent vers +o00 en a et si f(z) = o(g(x)), on dira que la fonction g tend
r—a

plus vite vers +oo que la fonction f en a.

« De méme, si deux suites (un),cy, (Vn),cy divergent vers +oo et si uy, = o(vy) on dira que (vy,),y diverge
n—-+0oo

plus vite vers +00 que (uy), oy (notez I'inversion de la rapidité par rapport au cas de la convergence vers 0).
Attention ne confondez pas ordre de majoration et vitesse. Par exemple la suite (uy,) = (2n),,cy est toujours plus

neN T
grande que la suite (vy,), oy = (1), cy mais bien que (uy), oy diverge « deux fois plus rapidement » que (v,),, oy, il

est faux d’affirmer que v, <§_ up. On dira plutot que les suites (uy,), oy €t (vn),cn Ont des vitesses de divergence
n—-+oo

comparables (& un facteur 2 prés). Pour étre négligeable il faut donc diverger/converger « beaucoup moins rapidement ».
1.2 Croissances comparées

Soient A € K*, («, 8,a,b) € (Rjr)él7 (¢,7) €]1; +o0[%

1. En 400, on a

1 1 1 a b a8 ap
0 < — - € ——— < A < In(2) < ¥ < & < n
r—r+o0 ’yw r—+o0 (E'B r—+o0 ].D (.CI,') r—r+o0 r—+o0 r—+oo r—+00 r—+o0
2. En 0, on a
1
0 € 2% < A < |In(z)]* < —.
z—0 z—0 x—0 z—0 T

3. Pour les suites, on a

1 1
0 < < A <« h'(n) < < < nl < n

n—-+oo ’y" n—-+4oo nB n——+oo 1na<n) n—-+oo n—-+4oo n—-+oo n—-+oo n—-+4oo

\. J

Remarque 5 : Nul n’est négligeable devant la suite/fonction nulle.

Démonstration. Tout ces résultats sont des conséquences des limites connues de croissances comparées. Exemple :
b

T
limg 4 oo z—j = limy_ oo xP e *10() Or —In(c) < 0 donc lim — = lim |t|beln(c)t = 0 ce qui implique par
z—+oo T t——o0
définition que 2 = o(c?).
r——+o0
Seul 'encadrement du factoriel reste a démontrer.

« Montrons que (c"), oy est négligeable devant (n!), .y avec ¢ > 1, i.e. que la suite (un), cy = (%) oy Converge
rn

vers 0 en +oo. Notez que (un), oy est bien définie car pour tout n € N, n! > 1 > 0. Il existe ng € N tel que
ng = ¢ (prendre par exemple |c| + 1). Donc pour tout n = ng+1> ¢, on a

n no n
C C C
" k k k
k=1 k=1" k=no+1
——
=A

70

Pour tout k > ng +1 2> ¢, on a < 1. Donc, par positivité des termes manipulés, pour tout n > no +1 > ¢,

n
ungAnUX H 1:An07
k=no+1

ot Ap, = [[;2; % est un réel qui ne dépend que de ng et non de n. Donc (uy,),,cy est minorée par 0 et majorée
par A,, a partir de n = ng + 1. Soit n > ng + 2, on a alors
c c c
0< Uy =uUp—1 X — < Apy X —, car — >0 et up_1 < Aypy,.
n n n

Donc par le théoreme d’encadrement
lim u, =0.
n—-+o0o

et donc ¢" = o (n!).
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+ Montrons maintenant que (n!), y est négligeable devant (n™), ... Pour tout n € N*, n™ > 0 donc nous allons

montrer que la suite (uy), cy = (n"—i)neN* converge vers (. Pour tout n > 2, on a
n n n

k k 1 1 1

0<u, =[[ == <H> x — < <H1>:.

k=1 ko " k=2 /)T

Par le théoreme d’encadrement, on en déduit donc que liIJIrl un, = 0 et donc n! = o (n").
n—-+oo

Soient (p,q) € Z?%, q < p alors

R P D — q [/ P 1 L
1. =z m_>+ooo(ac) 2. @ Iﬁoo(x) 3. n n_>+ooo(n) 4. -5 n_H_OOo( )

1.3 Propriétés algébriques des petits o

Exemple 6 : Transitivité et somme. On a les égalités asymptotiques suivantes :

1. o (ac3) + o0 (:rg) = o0 (:r3) 2. o (x3) + o0 (:r2) = 0 (xg)

IA):OO —0

3. o(e™)+o(n') +o(e™) +o(e?) = o) 4. o(In(z)) + o (2) +o(e™®) = o(In(z))

n—+o0o z—0

5. of(arctan(z))+o(vx)+o(In(z))+In(z) =o(v/x) 6. o(sin(z))+o(1)+o(x?) +a* o0 (1)

—

Exemple 7 : Transitivité et somme. On a les égalités asymptotiques suivantes :

L 0(3z +4° + 13+ cos(x)) = o(4) 2. 0(o(0(a?))) = o(?)

3. o(3n'—e"4nl+2) = o(n) 4 o (samm trt o) =, 0 ()

5. o(In (522 +4) + o(e”) 4 ch(z)) T (e?) 6. o(42? +o(vz)) +o(ln(z+2)+e”) =0
Exemple 8 : Produit. On a les égalités asymptotiques suivantes :

1. o(522)0(—8z) =0 (%) 2. gko(2?) = o(3k)

3. 403 70®) = o((3)")

4. Soit A€ R, Ao (5x3 —Tr+ 9) 0 (sin (172) + 2:5) =

z—0 |0 sinon

{o(x) si A#0

5. o(zln(z))o(k)o(o(4z)) = 0(@)

r——+00

6. o (5z +¢*) o (sin(z) + /) o (arccos(z) + arcsin(z)) = o(y/x)

Remarque 9 : Attention, h (z) 4+ o (g (x)) # o (h(z) + g(z)) et de méme pour les suites.

Remarque 10 : L’objectif et la force de 'analyse asymptotique est de ne garder que I'information utile la plus concise
du comportement de la fonction au voisinage du point considéré. On comparera alors nos fonctions avec des fonctions
de références tres simples (polynémes surtout et méme monome, exponentielle, logarithme...).

Remarque 11 : On a

o Fonctions : Si f(z) o(g(x)) et g(x) = 0 alors f(z) — O.

—a

(

o Suites : Si up T ) et vy, ol 0 alors u,, o 0.
(
)

etu, — +ooalorsv, — Hoo.
n—-+40oo n—-+400 n—+00
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Les réciproques sont fausses en général bien entendu !
Remarque 12 : Voici des manipulations importantes du petit o :

1. Pour tout n € N (y compris 0), on a o (z™) _e 0.
z—>

2. Soient n,m € Z avec m < n. Si f(z) = o(x™) alors f(z) = o(z™).
T——+00 T—>+00

3. Soient n,m € Z avec m < n. Si f(z) = o(xz™) alors f(x) =, (™).
z— z—

ATTENTION !!! Les réciproques sont fausses en général. Méfiez-vous donc de ’égalité

m . n
o(x mﬁ—ﬂ)oo(z ),

qui, si m < n, est vraie en la lisant de gauche & droite mais qui est fausse si on la lit de droite a gauche!!!

II Les équivalents - Rappel

II.1 Définition

- )

 Fonctions : Soient a € R, I un voisinage de a et f et g € . (I,K). On suppose que Vz € I, g (z) # 0. On dit
que f est équivalente & g en a, noté f(x) ~ g(x) si et seulement si
r—a

lim f (@)

= I,
z—a g (x)

o Suites : Soient (un),cy € KN et (vn),en € KN deux suites. On suppose que Vn € N, v, # 0. On dit que

(tn), ey est équivalente a (v,),, oy, NOté uy, WL, Un siet seulement si

\ J

Remarque 13 : Nulle autre que la suite/fonction nulle est équivalente & la suite/fonction nulle. Il est INTERDIT
d’écrire uy, ~ 0 si (un),cy N'est pas la suite constante égale & 0 et INTERDIT d’écrire f(z) ~ 0si f n’est pas
n—400 T—a

la fonction nulle. A bon entendeur...

Exemple 14 :
Lot ~ 4 2. 3" 42"~ 3
n " n—+4oco ™ n—+oo
3. 224 x2+5 ~ 22, 4. 2422 ~ 2
T—>400 z—0

11.2  Propriétés

_ A

La relation ~ est une relation d’équivalence sur K. Soient (un),cy, (vn),cn deux éléments de KN

1. ~ est réflexive : u,, ~ up,.

n—-+oo
2. ~ est transitive : {un ~ vpetv, ~ w, = Up ~ Wp.
n—-+oo n—-+oo n—-+4oo
3. ~ est symétrique : u, ~ v, & Up ~  Up.
n—-+oo n—-+oo

De méme, ~ est une relation d’équivalence sur .# (I, K).

\ J
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e Fonctions : Soient f et g deux fonctions définies au voisinage de a. On a

f@) ~ gx) o fl2) = g(z)+o0(g(z)) (ou encore g(z) = f(z)+o(f(x))).

r—a r—a T—ra
o Suites : Soient (un),cy €t (vn),cy deux suites. On a I'équivalence suivante :

Un | ™ Un <= Un = Un + o(vn) (ou encore v, e Un + o(uy)).

\ J

Remarque 15 :

o Attention w,, ~ v, n’implique pas a priori que u, —v, — 0! Par exemple : pour tout n € N* u,, = /n
n—-+0oo n——+00

et v, = +/n+ In(n).
e La réciproque est aussi FAUSSE : si u, —v, — 0 cela n’implique pas que u,, ~ v,. Par exemple : pour
n—-+oo n—-+o0o

* 1 _ 1
tout n € N*, up, = - et v, = 5.

Exemple 16 :
1. sin(x) v, T le sin (2) Sorto (2)
e _ e >
2. ch(x) L0 T Le ch (x) ozt o (e")

3.n34+n = n3—|—0(n3) ieend+n ~ nd
n—-+oo n—-+o0o

4. arctan (x) = 5 +o(l) ie. arctan (z) ~ 3
T—r1+00 T—r+00

Interprétation : La notion de suites (respectivement fonctions) équivalentes exprime donc le fait qu’au voisinage de

+o00 (au voisinage de a), I'écart relatif entre les termes u,, et v, (i.e *2="=) tend vers 0, (respectivement % —
n T—ra

0). Intuitivement les deux suites (respectivement fonctions) ont alors la méme « vitesse de convergence » en +0o
(respectivement au voisinage de a). Attention, avoir le méme comportement ne signifie pas nécessairement avoir le
méme graphe ni méme des graphes qui se rapprochent.

_ A

Soient (tn), ey €t (vn), ey deux suites réelles. Soient a € R, I un voisinage de a et f et g deux éléments de .7 (I,K).

1. Fonctions :

(a) Si f ~ g alors les fonctions f et g ont le méme comportement au voisinage de a :
r—ra

e si 'une converge vers [ 'autre aussi,
o sil'une diverge (vers oo ou diverge tout court), Pautre aussi.
(b) Pour l e R avec I #0: f(z) — Isiet seulement si f ~ .
r—a x

—a

(c) Si f ~ g alors les fonctions f et g ont le méme signe au voisinage de a.
r—a

2. Suites :

(a) Siu, N Un alors les suites (), oy €t (vn), oy sont de méme nature au voisinage de +oo :
n—-+0oo

e si 'une converge vers un réel [ € R, autre aussi.
o sil'une diverge (vers oo ou diverge tout court), Pautre aussi.

(b) Pourl e Ravecl#0:u, — Isietseulementsiu, ~ I
n—-+00 n—+00

(c) Siup ~ wy, alors les suites (un),cy €t (Vn),cy Ont & partir d'un certain rang le méme signe.
n—-+oo

\. J

Remarque 17 : Attention, ’assertion suivante est FAUSSE en général :

lim u, = lm v, = Up ~  Up
n—-+oo n——+4oo n——+oo

Par exemple, pour tout n € N*, u,, = % et v, = %
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Soient (uy,)
Z (I,K).
1. Fonctions : Si pour tout © € I, f(z) < g(x) < h(z) et si f(x) ~ h(z) alors f(x) ~ g(z) ~ h(z).

T—a

nens (Un)pens (Wn), oy trois suites réelles. Soient a € R, I un voisinage de a et f, g, h trois éléments de

2. Suites : Si:dng €N, Vn > ng, up, <vp <w, etsiu, ~ w,alorsu, ~ v, ~ W,
n—-+o0o n—-+oo n—-+oo

\ J

Démonstration. Démontrons le résultat sur les fonctions dans le cas ot pour tout « € I, h(z) > 0 (le cas pour tout
x € I, h(z) < 0 se traite de méme, le cas général du signe quelconque, voire variable, est plus technique). Dans ce cas
(et dans ce cas seulement)

veel, flz) _ flz) _

h(z) = h(z)

Or f(z) ~ h(z), autrement dit, liLn {ng = 1. Donc par le théoréeme d’encadrement (le classique celui sur les
limites), on en déduit que
ilg}l Zgg =1 ie. g(x) e h(z).

Par transitivité, on a également g(x) e f(x).

II.3 Manipulation des équivalents

Exemple 18 : élimination des termes négligeables.

3_ 18,2 ~ 43 n ) n_ oyl

1. 2% — 1822+ 2z + 1 LT 2. e"4nl+cos(n) + iy W™

3. o3 + zarctan(z) + z/T + sin(z) ~, 7 4. zln(z) +sh(z) + e* +422 ~ 1
T— T—

Exemple 19 : produit, puissance, valeur absolue.

x x 3 ~ x 4 2 s ~ 2

1. (In(z) +15) (e” +3* + 2?) ete In(z)e 2. /n*+3n21n(n) + sin(n) Wl
. 2 (4|2 +42%)" 16
3. |sin(e) = 52% +sh*(@)] ~ el b G va) etoo 7

Si f(u) ad g(u) et si u(z) = b alors f (u(z)) g (u(x)).

Exemple 20 :
1. arctan (i) ~ 1 2. sin(1+2) Nll—i—x

z——4o0 T T——

. _ _ 141 1
3. arcsin(e™™) ~ e 7 4. etetmem  ~ ol
T—>+00 T—+00

Anti-Proposition I1.7 N\

1. La somme. [’assertion u,, ~ wv,etw, ~ t, = u,+tw, ~ v,+t,est FAUSSE en général
n—-+oo n—-+oo n—-+4oo

(de méme pour les fonctions).

2. La composition (4 gauche). L’assertion f(z) ~ g(z) = o(f(z)) ~ ¢(g(z)) est FAUSSE en

r—a T—ra
général (de méme pour les suites).

\ J

Exemple 21 :
1. n++/n ~ net3—n ~ —nmaisn++/n+3—n=./n+3n’est pas équivalent A n —n =0!
n—-+00

n—-+00

2. x N + In(x) mais e® n’est pas équivalent en 400 & e*+n(®) = g e,
T—r1+00

3. 14z ~ 1 mais In (1 4 x) n’est pas équivalent en 0 & In (1) = 0.
T—>+00
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1I.4 Equivalents usuels

Soient (ag, a1, ...,a,) € K" avec a,, # 0, (bp,...,b,) € K" P avec b, #0 et a € R.

n n
' P et "
PRI o W apT” o~ G
k=p k=0
e’ ~ 1 In(l+2z) ~ «
z—0 z—0
1 ‘-1
(1+xz) 0T tan(z) T
cos(x) o 1 sin(x) ot
h 1 h
¢ (.’IZ) mZO S (x) m:O v
arcsin(z) ~ =z arctan(z) ~ x
z—0 z—0
v s
ch(x) Niete sh(zx) et arctan(z) e

Exemple 22 : Déterminer un équivalent (le plus simple possible), de la suite (u, ),y dont le terme général est donné
par

1. u, = % 2. U, =sin (m> 3. u,=1In (1—|—Si1’1%)

III Développements limités

IIT.1 Définition

_ )

Soient I un voisinage de 0 et f : I — R. On dit que f admet un développement d’ordre n en 0, s’il existe
(ag,-..,an) € R

Veel, f(x) o Zakxk +o(z")
k=0

n

Le polynéme x — Z apx” est alors appelé la partie réguliére du développement limité.
k=0

\

Remarque 23 :

1. Cela signifie qu'au voisinage de 0, la fonction f « se comporte comme » la fonction polynomiale Y_;'_, apz® ou

encore que la fonction ZZ:O apz® constitue la meilleure approximation & 'ordre n de la fonction f. Plus ordre
est important, meilleure sera ’approximation.

2. Naturellement cette approximation n’est valide a priori qu’au voisinage immédiat de 0 et ne présume rien de la
fonction des que ’'on s’éloigne un peu de 0.

Exemple 24 :

1. Un polynéme posséde un développement limité & n’importe quel ordre. Exemple f(z) = 52 + 222 — 6 on a
f(x) =, 6+ 22% 4 0 (2?) ou encore f(x) =, 6+ 202 4 52° + o (z*7).
r— r—

/25
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2. Pour tout n € N, on a

1—=x mi;O

1 n
ka +o(x").
=0

Démonstration. Soit x €] — 1; 1], on sait que

n
Z X 1— anrl 1 anrl
" = = - .
P l1—=z l—-z 1-—2x
c’est-a-dire
n
= T .
1—2 1—x
k=0
Or
Zntl
. - . T
lim =% = lim =0.
x—0 " =01 — o
z#0 x#0
Par conséquent, 2 = o (z™) et donc
4 Tl-z o0

1 < n
1_mziOZxk—|—o(m‘ ).
ki

3. En prenant —z dans l’exemple précédent, on obtient également pour tout n > 1,

1 —
1+=x 20

(—1)*azk + 0 (zm).

NE

E
I

0

Soit xp € R, I un voisinage de xo et f une fonction définie sur I. Alors la fonction h +— f(zo + h) est définie sur
J={heR|h+x€l}, un voisinage de 0. On dit que f admet un développement limité d’ordre n en xq si la
fonction h — f(xg + h) admet un développement limité d’ordre n en 0, c’est-a-dire s’il existe des réels ao, ..., a,
tels que

— k n
f(xo +h) h:mkz:oakh + o(h™).

En posant x = xg + h, cette relation s’écrit aussi

n

f(z) e Z ar(z — 20)* + o((z — 20)™).

\ J

Remarque 25 : Pour calculer un développement limité en zy, on peut toujours se ramener en 0. Les résultats du
cours sont donc énoncés en 0 et on peut (sauf mention contraire) les adapter en xy.

1

Exemple 26 : Donner le développement limité a l'ordre 3 en ¢ = 2 de la fonction f(z) = -.

I1I1.2 Premieres propriétés

Soient n € N et f une fonction définie au voisinage de 0. Supposons qu’il existe I un voisinage de 0 et des réels
ag, . ..,an, €t by, ..., b, tels que

Veel, f(x) o Z axz® + o(z™) et f(z) o Z bra® + o(z™)
k=0 k=0

alors on a pour tout k € [0,n], ar = by.

\.
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Démonstration. Procédons par absurde et supposons que (ag, . .., a,) # (bo, . .., by ). Soit 7 le premier indice entre
0 et n tel que a, # b,.. On obtient alors pour I un voisinage de 0

Vo eI, ap+a1x+ -+ apz” +o(x") =by +brx+ -+ bpz™ + o (2")
= Vo eI, arx” + a1 a0 (™) = bea” + b T 4 b o (27)
= Vo eI\ {0}, ar + arp12+ -+ apax” "+ o(x"_r) =b.+brr1x+--+ bz +o0 (m"_r)

Donc en soulignant le fait que n — r > 0 et en passant a la limite quand x — 0, on obtient alors que
ar = bm

ce qui contredit I’hypothése initiale et achéve la démonstration. 0

_ )

Soient (n,m) € N2, tel que m < n. Si f admet un développement limité d’ordre n en 0 alors elle admet un
développement limité d’ordre m. Plus précisément, si

_ k n
Veel, f(x) o Zakaz +o(z™)
k=0
est un développement limité d’ordre n de f alors
_ k m
Veel, f(x) o kz_oakx + o(z™)

est un développement limité d’ordre m de f.

\. J

Démonstration. Soit I un intervalle contenant 0 et f une fonction définie sur I telle que

r—r

n
flx) = ’;)akxk + o(z™) =, 00 tar+ apx® + - 4 apz™ + o (z")

=, 90 +arr+ax? - apx™ + apmp2™ T 4 Faa™ Fo(z").
x

=g(=)
De plus on remarque que

g(x)  amprx" 4 Fapa™ +o(a") _ _
s e _am+1x+...+anxnm+0(l‘n m)mo.

Par conséquent, g(x)

_ m 3 _ m k m
o (™) et on a bien f(x) o Y oheo arx” + o(z™).

Attention, ce résultat n’est vrai qu’en 0.
Soit f une fonction admettant un développement limité en 0 d’ordre n € N de partie réguliere P(z) = ZZ:O apzh.

1. Si f est paire alors P(z) ne contient que des puissances paires de z.

2. Si f est impaire alors P(x) ne contient que des puissances impaires de x.

Démonstration. Soit f une fonction paire définie sur un intervalle I centré en 0 (et non réduit a {0}) ayant un
développement limité en 0 d’ordre n : il existe (ag,a1,...,a,) € R**1

n

f) = ap+az+- - +a2” +o(z") = Zakxk+o(x”).

z—0 z—0
k=0

Puisque I est centré en 0, pour tout x € I, on a —x € I et par conséquent, on a également

n

f(=x) S0 @t (=) "anx™ 4+ o ((=1)"z™) o Z(—l)kakxk +o((—=1)"a™).
k=0
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La fonction f est paire donc Vx € I, f(—x) = f(x). De plus si n est pair, (—1)"z™ = 2™ et si n est impair
o((=1)"a™) = o(—z™) = o(a™) (cf Proposition 1.5). Dans tous les cas,

Ve el, f(z) o0 mT et (D) "ana™ +o(z") o Z(—l)kakxk +o(2").
k=0

Donc par unicité du développement limité, on a pour tout k € [0;n], ax = (—1)*as. Notamment si k € [1;n] est
impair, alors ay = —ay et donc ax = 0. Ceci démontre bien le premier point de la proposition. On procéde de méme
pour le cas ou f est impaire. 0

_ )

Soit f une fonction définie sur I un voisinage de 0 (éventuellement I est privé de 0).

1. La fonction f admet un développement limité d’ordre 0 en 0 si et seulement si f est continue en 0 (ou
prolongeable par continuité si elle n’est pas définie en 0). Son développement limité est alors donnée par

f(x) = f(0)+0(1).

z—0

2. La fonction f admet un développement limité d’ordre 1 en O si et seulement si f est dérivable en 0. Son
développement limité est alors donnée par

f@) = FO)+f(0)z+o(z).

T —

3. Si f est de classe €™ sur un voisinage de 0 alors f admet un développement d’ordre n en 0.

\ J

Démonstration.

1. La fonction f admet un développement d’ordre 0 en O si et seulement si
37 un voisinage de 0, Jag € R, Ve € I,  f(x) =, +o (1)
T—

= 37 un voisinage de 0, Jag € R, Vz € I, f(x)—ag = o(1)

& Jdap € R, lim f(z) —ag =0
z—0

& Jag € R, lim f(x) = ao.
z—0

La derniére assertion est la définition de la continuité de f en 0, ce qui démontre le premier point.

2. Si la fonction f admet un développement d’ordre 1 en 0 alors

3I un voisinage de 0, Jag,a; € R, Vx € I, f(x) =, %0 +arz+o(x).

rT—r

En particulier la fonction f admet un développement limité d’ordre 0 en 0 (cf la Proposition II1.5) et d’apres le
premier point, f est continue en 0 et de plus f(0) = ag. On a alors

Vo e 1, f(z) = f(0) —a1x = o(x) & Vo e I\ {0}, 2 T 4 = o(1).

x—0 x x—0

Par conséquent,

e L@ O @) - f)
xz—0 T z—0 T
x#0 z#0
Ainsi, on en déduit que la fonction f est dérivable en 0 et de plus f/(0) = a1 et donc son développement limité

est
Veel,  f(z) = f(0)+ f'(0)z+o(z).

z—0

Réciproquement, si f est dérivable en 0 alors par définition,

x#0
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Par conséquent, il existe I un voisinage de 0 tel que

veer, L= _ w400

xX x—0

ou encore tel que
veel, f(z) o F0)x +z0(1)+ £(0) = £(0) + f(0)x + o (x).
Donc f admet bien un développement limité d’ordre 1 en 0.

3. Admis pour l'instant c¢’est un corollaire du Théoréme de Taylor-Young que nous allons voir un peu plus tard

dans le chapitre.
|

Contre-exemple. La réciproque du dernier point est faux en général. Si f admet un développement d’ordre n en 0,
la fonction f n’est pas nécessairement de classe ¢ au voisinage de 0. Soit

f:R—=R
3 . 1 .
. {erxssm(xQ) siz#0

On a zsin (Zz) — 0. Donc zsin (Z5) o (1). Par conséquent,

x—0 130

VreR, f(z) = x+2%(1) = x—i—o(:vQ).

z—0 x—0

Donc f admet un développement limité d’ordre 2 en 0. Cependant la fonction f n’est pas €' sur R. En effet, on sait
que f est dérivable sur R* comme somme et composée de fonctions dérivables sur R* et pour tout x € R*,

1 z? 1 1 1
! _ 2 : _ 2
f'(x) =14 3z”sin (7:52) - 2;3 oS <—x2> =1-2cos (;2) + 3z° sin (—x2> .

On remarque que f’ n’admet pas de limite en 0 donc f n’est pas €' malgré le fait qu’elle possede un développement
limité d’ordre 2.

II1.3 Développements limités usuels

Les fonctions suivantes sont ¥>° au voisinage de 0 et admettent donc des développements limités de tout ordre. Soit
n € N.

11/]25]
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nok
n x
S0 1+I+L;+"'+%+O(xn) 250 T o).
k=0 "
n 2k+1
23 L2+l T pe
shiz) = @5+ iy o (a3 H) S @y o).
k=0 :
22 22n o " x% 2n
ch(x) = 1"‘7‘*‘"""(%)!"‘0(1 ) o (2k)'+0(ac )-
k=0 :
n k.2k+1
- _ z3 (*1)n'ﬂ72n+1 n _ (_1) €z 2n+1
sin(e) = = F 4+ mmmr + o (z*"1) = kTl +o(z™).
k=0 i
2 _1)ng2n " "L (—1)kg2k ,
ole) =, 1-F e G e o S
k=0 :
n k 2k+1
E _qyng2ntl —1)"x n
k=0
n
ﬁ xio 1+$+J;2+..+xn+0($n) :Eio Zxk—i_O(J;n)
k=0
S, lortethee k(G e o) Do 2D o).
k=0
n k41K
S & | ey _ (=)™ n
In(1+ x) S Tt — +o(z™) o 2 ’ +o(z")
2 n - xk
In(1 —z) o Tt o= T +o(a") S T2 E +o(z")
k=1
(14 x)® =, l+tar+ alaly2 ... elezl)lamndl) yn g o (gn)
tan(z) = x4+ %3 + % + 0 (2°)
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IV  Manipulation des développements limités

IV.1 Somme et produit

Soient f et g deux fonctions ayant un développement limité d’ordre n en 0. Notons P et @ leurs parties régulieres
(ce sont donc des polynomes d’ordre au plus n) : pour tout x € I, ot I est un voisinage de 0,

f@) = P@)+o(a") et 9(@) = Qa)+o(a").

z—0 z—0

1. La fonction f + g admet un développement limité d’ordre n en 0 donné par

Veel, f(x)+g(x) o P(z) +Q(x) +o(z").

2. La fonction fg admet un développement limité d’ordre n en 0 donné par

Veel, f(x)g(z) = R(z)+o(z").

ou R est le polynéme PQ tronqué a l'ordre n.

\

Démonstration. Supposons que pour tout z € I, f(z) = P(z) 4+ o(z™) et que pour tout = € I, g(x) =
T—r T—r
Q(z) + o (a").
1. Alors, pour tout z € I,

fl@) +g(@) = Px)+o(a")+Qx)+o(z") = Pla)+Qx)+o(")+o(") = Pz)+Q(z)+o(z").
r—r _,—/

z—0 x—0
Lan"

2. De plus, le polynéme PQ est de degré inférieur ou égal a 2n : PQ = ap + a1 X + -+ + a9, X?". Si R est la
troncature de ce polynéme a ’ordre n :

PQ(X) = R(x) + ap 1 X" 4 - 4 g, X2
Alors, pour tout x € I,

f(@)g(z) = P(x)Q(x)+ P(x)o(z") + Q(z)o(z") +0(z") o (")

z—0
<<m'7L <<:E"L <<I'7L
= P(z)Q(z) +o(z") +o(z") +o(2")
z—0
<<:E’7L
= R(z)+ app1z™ ™ 4 g,z +o(z")
z—0
Lz™

R(z)+o(z").

Exemple 27 :
1. Calculons un DL3(0) de la fonction f : 2 — = —e®. La fonction f est définie sur ] — co; 1[U]1; +oo[. De plus
pour tout x €] — o0; 1[, on a
2 3 2 3
— 2 3 3\ _ = oz 3 _oxT ba? 3
f(z) o (1+z+a2>+2°+o0(2”)) <l—|—x+ 5 + 5 +o(x )) 0 3 + 5 + o (z%).

ATTENTION! Les petits o ne disparaissent pas!

2. Calculons un DL3(0) de la fonction g : = — % La fonction g est définie sur | — 1;+oo[ de plus pour tout

13/25



c
ﬁ( ’
( i //
""""""""""""" Mathématiques PTSI, Chapitre XII 2025-2026

[

1 _ -1/2 _1 (_%) (_%_1) (_% 2) 3 3
1+x—(1+x) Solm Tt 5 z* + G z® + o (z%)
T 3 2 23552 3 3
_ _ = i X2X
mzol 2+2x 6 x —l—o(:c)

.-
&
L
Q
S
=
©n
O~

S
=
)
=

\'CP

i)
s
=
L
=+
S
=
-+
8

M,

I
=
éi_

1+x z—0
Sol 3 Rt -t 4o (ef)
—5 45 -5 (37 a2t o (a?)
+o(a?) (1— 2 4222 — 523 4 0(a?))
2 3
—1-2-L % 450

Remarque 28 : Lorsque 'on cherche un développement limité d’ordre n d’un produit fg, il n’est pas toujours utile
de calculer un développement limité d’ordre n de f et de g (cela peut étre long). Il faut connaitre le degré du premier
terme non nul de la partie réguliere de f et de g par exemple p et ¢, et factoriser par le terme prépondérant :

flx) = P (1+...) et g(x) o 24 (1+...)

=u(x) =v()
pour alors anticiper que pour obtenir un développement limité de f(z)g(z) = 2Py (z)v(x) d’ordre n, un dévelop-
r—r
pement d’ordre n — p — ¢ de u et de v suffira. Autrement dit un développement limité d’ordre n — ¢ pour f et un
développement d’ordre n — p pour g suffiront.

Exemple 29 : Calculons un DLg(0) de la fonction f : 2 — sin®(z)In (1 + 2?). La fonction f est définie sur R de
plus pour tout z € R, on a sin(z) = x (1 + ...). Nous aurons donc sin®*(z) = 22 (1 +...). D’autre part, In (1 4 2?) =
2?2 (1 +...). Par conséquent nous aurons f(z) = z* (1 +...). On voit ainsi que pour obtenir un DL d’ordre 6 pour f,
des DL d’ordre 2 seulement suffiront pour les termes notés (14 ...). Pour tout € R, on a

sin(z) = x—x—+0(m3):x(1—%2+o(x2)).

Donc

D’autre part, pour tout v > —1,

2 3 , w2 ,
ln(1+u)uiouf?+§+o(u) = u<177+§+0(u ))

Par conséquent, avec u = x> —()) 0 (cf la proposition ci-dessous pour la composée de développement limité) on a pour
T—r

tout z € R,

2?2zt z?
1n(1—|—a:2) ziomZ (1—?—%?4—0(@"4)) xion (1—?+0(x2)).

14/]25]
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, ) 1 —9”2—2 +o (x2)
10 57 (-5 +0@) (1-Fro@) 5o | w0l
+o (mz)
= xt (1 ——2*+o0 (x2)>
xj() - éx(j to (x6)

IV.2 Composée et quotient

_ )

Soient n € N et f et u deux fonctions définies au voisinage de 0. On suppose que

1. la fonction f admet un développement limité d’ordre n en 0,
2. la fonction v admet un développement limité d’ordre n en 0,
3. lim u(z) = 0.
z—0
Alors, en notant P la partie réguliere de u et @ la partie réguliere de f :

u() = Ple)+o@@™) et f(z) = Q)+o("),

z— x—0

on obtient que la fonction f owu admet également un développement limité d’ordre n en 0 dont la partie réguliere
R est obtenue en tronquant a l’ordre n le polynéme @ o P.

\. J

Exemple 30 : Calculons un DL3(0) de la fonction f : 2+ ¢5™(®), La fonction f est définie sur R. D’une part pour

tout v € R, on a
2 3

u 3
Posons pour tout z € R,
3
— g _ T 3
u(z) = sin(z) S0% % +o0(z?).
o 3 ~ 3 3 _ 3 3 _ .3 3 .
On note que u(x) ot donc u?(x) et donc o (u?(x)) =0 (2°) et u?(x) St (2®). De plus,

u?(z) = (x—%3+0(x3)> (m—%s—i—o(ms)) miOxQ—i—o(x?’).

x:O
Puisque lirr%) u(x) = 0, on a par conséquent,
Tr—r

u(x)?  u(x)d

esin(®) xjo 1+u(z) + 5 + 6 +o (u(x)?))
3 2 3 3 3
- 2 5 r4o(z?) 2P 4o0(a?) 3
Sl o (@) + o to(a)
2

_ )

Si f est la fonction définie par = — ﬁ et si u est une fonction ayant un développement limité d’ordre n en 0 et
vérifie lirr%) u(z) = 0, alors f ou admet un développement limité d’ordre n en 0 et
T—r

fou(x)z1_;@zio1+u<w>+u2<x>+~--+u"<x>+o<x”>,

ou en développant les puissances de u, on ne gardera que les monémes de degré inférieur ou égal a n.

\. J

Exemple 31 :

15/]25
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sh(z)
ch(z) "

On sait que sh(z) =, % +0 (2*). On note que sh(z) =, (1 + % +o (mz)) donc un développement limité
— z—

1. Donner un DL3(0) de la fonction z —

T

a ’ordre 2 de i est suffisant et on a ch(z) = 1+ % +o0 (:r2) Par conséquent
z—0

1 1
ch(z) =—0 1 + %2 +o(2?)

z? 2 1 q_ — 2
Posons u(z) o~ +0 (x?) et on observe que u(x) = 0. Or o 1—u+o(u)eto(u(z)) 0© (2%). Donc

x:O

T—
1 _ 1 - 2 9 9
ch(g;) 20 1+u(x) e=0 ?—’_O(x )-i-O(x )
Des lors,
I3 .’1)2
B0 =, (o) (1-% +0(a?))
= x _z “+o0 (1;3)
z—0 2
+2 4o (2%)
+o (z%).
Conclusion,
sh(z) ° 3
Ch(x) :c:>0 B ? to (:L‘ )
2. Donner un DL4(0) de la fonction -
On sait que cos(x) =, 1- 12—2 + g + 0 (z*). Donc,
1 1

cos(x) 201 — 24 1o (ad)

2 4
Posons u(x) = —Z + 2 +o(z*). Alors,
(|
cos(x) =0 1 +u(x)’
Or on observe que u(x) — 0 et on sait que 7 = 1—u+u® —u® +u* + o0 (u?).
z—0 U u—0

CL‘2 x4
e On a u(x) o —L 4+ & 4o (z?) 1:60.

_x? 412 . N . 2 . 2t
o De plus, u(z) Nt donc par élévation a la puissance, u(z) S 1 e
4
2 _ T 4
(@) =, 7t
9 CEG — — —
« D’autre part, u(z)? T ® LSO (2*) et donc u(x)* o (2*) et o (u(x)?) 0O (z*).
Ainsi,
1
cos () o 1 —u(z) + u(x)? —u(z)® +u(z)* + o (u(a:)4)
z? o 4 ! 4 4 4 4
o +§—ﬂ+0($ )+ +o(a?) +o(a?) +o(z) +o(a?)
z? 5zt

Exemple 32 : Factorisation par le terme prépondérant
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1. Donner un DL3(0) de f : z — z”

1—cos(z) "

On sait que cos(x) o 1— “”2—2 + % +o0 (m4). Par conséquent,

x? x?

fla) = 1 — cos(x) 20 L; — % +o(zt)’

2
. ’ . ’ , . T . . 1
On factorise alors dans le dénominateur par le terme prépondérant qui est %- pour faire apparaitre du T4z ou
1

1—u
2 1

= o E— .
=0 %(1—%4—0@2)) 2=0 "1 — 22 4 o (22)

f(x)

On se rend compte que U'ordre initial n’est pas suffisant. Reprenons, on sait que l'on a également cos(z) =
r—r

1-— %—k%—i—o(ﬁ). Donc,

2 oz T T
1—cos(x)x30?—ﬂ+o(az5) xjoi(l_ﬁ—i_o(xs))'

D’ou,
f(@) ;
x =
z=0 1 — ‘1‘—; +o(x?3)
— 2 3 p _ 1 ) Na d
Posons u(x) = & +o (:c ) Des lors, on a f(z) o 2m avec, et c’est trés important,
u(z) — 0.

z—0

Or -1 :01+u+u2+u3+0(u3). De plus,
u—r

1—u

_ 3
» ul@) z—0 12 +o(2?) =Y
o Puis,

e De méme,

« Enfin, o (u(x)?) =, ().

r—r

On obtient donc

22
f(x) =, 2 (1+u(z) + w(z)? 4+ u(z)® + o (u(x)3)) = 2 (1 +—+4o (x3) +o (363) +o (x?’) +o (963)> .

T—r

Conclusion,

2. Donner un DL3(0) de g : @ — In (1 + 2 + 1+ ).
On sait que

ng (1/2)(2—1/2)£52Jr (1/2)(—1é2)(—3/2) 1 o0(a?)
2 IS

Vit = 1+
z—0

_ r_ T v 3
$:01+2 S +16+0(x).
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Donc
itz z xz2  a23 3 3z z2  a? 3
g@)=m(1+e+Vita) = m{ltat1+5 -2+ Tto()) = (245 - T+ +0()).
On factorise par le terme prépondérant qui est 2 ici :
3z 22 2t 3 )) ( 3z 2% o 3 )
g(x)$:>oln<2<1+zfl—6+§+o(x) mzoln(2)+ln 1+Zfl—6+3—2+ (%)) .

(m3). On a alors,

g(x) = In(2) +1In(1+ u(zx)).

x—0

Or u(x) — OetIn(1+wu) =, U~ “72 + % + o (u?). Calculons,
xT u

. = 3z
u(z) -0 4

e De plus,

o Puis

« Enfin, o (u(z)?) =

r—r
Des lors,

Conclusion,

3. Donner un DL3(0) de h

On sait que arctan(z)
x

Ainsi,

f%+§—;+o(x3)—>0

x—0

3z z> x 3z z? z
u(@)? = (%St +o(®) (% 5+ 5 +o(?)
3
5 o (s?)
+o (2°)
2 3 «
=, 16 a3 to(@?)
u@) = (F -t to) (% - % to(e?)
o T ol
+o (z?)
= o).
0 +o (ac3)
gla) = () +ule) - G+ 4o (u(@)?)
—om@E —f 4n ot
3 -
+5r to(2?)
+o (z%)
. ]
3z 112?  72°
o(a) 5, )+ T~ + 5 +ole?).
arctan(xz)
cTxrre @
0% % —|—o(:z:4). Donc,
arctan(z) x? 3
- 1301_?—"_0(%)-
o) = B Bl
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a+b _

Ici on utilise la propriété e e® e® pour faire apparaitre de e* avec u — 0 :

h(z) = ol e +o(*)

z—0

Posons u(z) = —% + o (z%) — 0. Onae" = 1+u+ L 4o (u?).
2
— 3
o u(r) = —% +o(a: ) — 0.

z—0 z—0 x:

o Par suite, u(z )3 ( et o(u(@)?) = o(x?).

D’ou,

o Deplus u(z) ~ —% ° donc u(xz)? ~
(x

h(z) = e (1—%+0(ac3)+0(x3)+o(x3)+o(x3)> zoe—§x2+o(x3)_

z—
4. Donner un DL3(0) de k : = — l+c’3’
IV.3 Primitivation des développements limités

_ )

Soient n € N et I un voisinage de 0. Soit f une fonction définie sur [ telle que pour tout « € I, f(x) o(z™). Si

ach
F' est une primitive de f sur I, alors
F(0)+o(z"th).

z:O

F(z)

Soient n € N, I un voisinage de 0, f une fonction définie sur I admettant un développement limité d’ordre n en O :

Veel, f(x) = Zakxk +o(z").
k=0

Soit F' une primitive de f sur I. Alors F' admet un développement limité d’ordre n + 1 en 0 qui est donné par

n

a
F(z) = F(0)+ > kfl
k=0

\ J

zFtl + o (;E"'H) .

Démonstration. Soient n € N, I un voisinage de 0, f € & (I,K) et F' une primitive de f sur /. On suppose qu'il
existe (ar)yepomy € R™T tel que

n
r) = Z apz® 4+ o (z").
z—0 Pt

Montrons que F' admet un développement limité obtenu a partir de celui de f en intégrant terme a terme.

On pose pour tout = € I,
n
g(@) = f(z) = Y axa®.
k=0

On a alors g(z) =,° (z™). Posons également
Tr—r

Veel, G(z)=F(z)- k“k T
k=0 +

Alors, puisque F est une primitive, F' est dérivable sur I. Il en va donc de méme pour G en tant que différence de F’
et d’un polynéme. De plus,

veel, G'(2) Z(k—i—l kH) :f(x)—Zakmkzg(x).

k=0 k=0
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Donc G est une primitive de g et g(z) = o(x™). Ainsi par intégration du petit o, on en déduit que Vz € I,
xr—r
G(z) = G(0)+ o (z™*1). Par suite, on obtient
x—0

Exemple 33 :

1. Retrouver le développement limité en 0 & 'ordre n de z — In(1 + ).
On rappelle que l'on a établi dans ’exemple 12 le développement limité de = — ﬁ en 0. Soit n € N. On a

1—=x x%OZz +O

La fonction o — 12— est continue sur | —co; 1[ qui est un voisinage de 0. Donc admet des primitives sur ] — oo; 1[.

En particulier on sait que z — —In(1 — ) est une primitive de = — i sur | — 0o; 1[. Donc d’apres le théoréme
V3] on en déduit que

n
_ n+l
—In(1 —2x) =0 ; )
-0 =
n+1 l‘k
_ — i n+1 5 . 7. —
= In(1 —x) o ; 2 +o (2"t par changement d’indice k = k + 1

Ceci étant vrai pour tout n € N, on en déduit que le développement de = — In(1 — x) & 'ordre n € N* est

In(1 — z) xio_’;?_‘_o(aj

Naturellement quand * — 0, —z — 0, donc on a également

In(1+2z) = —Z( k) —i—o((—x)”):Z(Txk—Fo(x”).

x—0
k=1 k=1

2. Retrouver le développement limité en 0 & lordre 2n + 1 de x > arctan(z).

Soit n € N, on sait que H%u = >oreo (=1)" u* + o (u™). Posons pour tout z € R, u(z) = 22 et f(z) =
u—r .

_1
1422
On obtient alors,

n

zjoz xz +O((x2)n) inZ(—l)k 2?40 (2").

k=0 k=0
On sait que la fonction arctan est une primitive de f sur R. Donc par le théoréme d’intégration des développe-
ments limités, on obtient bien

k 22k+1

2n+1
2k+ o)

x—0

n
arctan(z) = arctan(0 —|—Z
k=0

Exemple 34 :
1. Calculer le DL4(0) de In(ch) puis en déduire & nouveau le DL3(0) de £ obtenu & l'exemple
. 22 -
On sait que ch(z) o 1+ % + 2 +o0(z*). Donc

L2 g
In (ch(x)) :Oln( +7+ﬂ+0( ))

r—r

N
.

x x u2
Posons u(x) 4+ 4o(x?) = 0. Or In (14 u) SouT o (u?).

m:>0
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* ’LL(:L’) a:jO

o Par suite,

Posons F' = In (ch). La fonction F est définie et méme dérivable sur R. De plus f = F' =

2 4

N )

In (ch(z)) = u(x) — u(;)Q + o (u(x)?)
z2 zt 4
SoT tm o)
—
+o (w4) .
X 1‘4
SE B o),

« La fonction f est € sur R donc admet notamment un développement limité & I'ordre 3 en 0, notons-le

f(z) =% +ar1x + agx® + aza® 4 o (ac3) .

x

e F est une primitive de f sur R.

Donc par le théoreme d’intégration des développements limités, F' admet un développement limité a 1'ordre 4
en 0 (on le savait déja) et

Ainsi,

NB : le fait que ag = az = 0 s’anticipait par le fait que f = 3 est une fonction
. A Tl'aide de I’exemple [31| déterminer un DL3(0) de =
Par 'exemple on a

o

dérivée est donnée par

La fonction f est €3 sur ]—%; g[ donc possede un développement limité d’ordre 3 en 0, notons-le

1
cos(z)

F(0) + apz + D2y B2y B8

F =
@) 5, 2 3 1

-1 +o (x4). Donc par unicité du développement limité

(0) = In (ch(0)) = In(1) = 0 = 0 OK

3
- . 3
f(x)gc:oac 3+0(:r).
sh
h

cos? "

= 1+ %2 + % +0(x4). Or la fonction F' =

xr—

o fo sin

cos?’

f(z) =, + a1z + asx® + azz® + o (x3)

T—r

0 (334) )

(10:&3:0
a; =

az =

1
cos

W=

impaire !

est dérivable sur ]—g

g[etsa

bl

Puisque la fonction f est impaire, on en déduit que ag = az = 0. Comme F' est une primitive de f sur }—g 3 [7
par le théoreme d’intégration des développements limités,

F(x) = F(0) + %f + %m‘l +o(z%).
1 x? bt
F(z) = = 1+ =+ +o(z")
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Donc par unicité des développements limités, on a

F(O) = cosl(()) =1=10K F(O) = cosl(O) =1=10K
% = % -~ a1 =1
vk o =}
Conclusion,
_ osin(z) 5 5 3
f(f)—mx_>0$+gm +o(a%).

IV.4 Formule de Taylor-Young

Soient I un intervalle, n € N, f € €™ (I,R) et 2o € I. Pour tout z € I on a

n

:v—);po Z 17—1’0 F® (o) 4+ o ((x — zo)™).

k=0

Remarque 35 :
o Lescasn =0 et n=1 correspondent a la Proposition

o La démonstration de ce théoreme démontrera le point 3 de la Proposition que nous avions précédemment
admis qui nous dit que toute fonction de classe ™ admet un DL d’ordre n.
o Par l'unicité d’un développement limité, si f(z) = ag+ai(z —xo) + -+ an(x —x0)" + 0 ((x — 20)") et si f est
(k)
de classe €™ au voisinage de x( alors nécessairement pour tout k € [0;n], on a a = ! (IO)

Démonstration. Soit I un voisinage de z¢. Procédons par récurrence sur n et posons (n) la propriété suivante :

n

Py vy €6 LR), ), 5, > EEE [ ) 4o (- 0).

k=0

Initialisation. Sin = 0 ou méme n = 1, cela correspond aux points 1 et 2 de la Proposition que nous avons déja
démontrés.

Hérédité. Soit n € N. Supposons Z(n) vraie. Montrons que Z(n + 1) est vraie. Soit f € ¥"+! (I,R). La fonction
g = f existe sur I et g € €™ (I,R). Donc par hypothese de récurrence, on a

- > m‘xo @ = 20" 09 (2) 4 o (& - o)™

$—>$
° k=0

Puisque la fonction f est une primitive de g sur I, on en déduit du théoréme IV.6 (intégration des DL) que

L S L
flx e f(zo) + % (kl(k —(:_)1) g(k)(xo) +o ((x - zo)nJrl)
- =D (o)
= f(x )+§:mﬂk+l)(m )+0((x —x )n+1)
T—To 0 poars (k—|—1)! 0 0
= M k - n+l
T—x0 f (1’0) + k! f (Jf()) “+ o0 ((l‘ ,130) )
k=1
e (x — z0)"
S @) o (@ - ao)™ )
=0

ce qui démontre que Z(n + 1) est vraie.
Conclusion. Pour tout n € N, Z(n) est vraie et le théoréme est démontré.
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IV.5 Applications

Exemple 36 : Rechercher un équivalent et/ou une limite.
(1 + cos(x)) — 2 tan(z)
x3 ’

Déterminer la limite suivante : lim
270
Exemple 37 : Etude d’une tangente.

1. Donner ’équation de la tangente au graphe de la fonction exp en 1.

1
1+e*

2. Déterminer la position de la fonction f : x — par rapport a sa tangente en 0.

Exemple 38 : Etude d’une asymptote.

1. Etudier les branches infinies de la fonction f définie sur 2 =] — 0o, 0)UJ1, +oo[ par f(z) = /2.
14+e

_ A

Soient I un intervalle de R, a € I un point un lintérieur de I (a # inf (I) et a # sup (I)) et f une fonction ayant
un développement limité d’ordre 2 en a :

2. Etudier les branches infinies de la fonction g définie sur R* par g(z) =

I~
x

f(z) zaao—l—al(az—a)+a2(:1c—a)2+o((:1c—a)2).

T—>

1. (Condition nécessaire) Si f admet un extremum en a, alors a; = 0.
2. (Condition suffisante)
e Sia; =0et ay >0, alors f admet un minimum local en a.

e Sia; =0etay <0, alors f admet un maximum local en a.

Démonstration.
1. Si f admet un développement limité a 'ordre 2 alors par troncature, f admet un développement limité a 'ordre
1 et donc par la proposition on en déduit que f est dérivable en a et que
f@) = fla)+ f'(a)(z —a).
r—a

Par unicité du développement limité, a; = f’(a). Or par la propoition V.7 du chapitre 2, pour que a soit un
extremum, il faut que a soit un point critique de f :

a; = f'(a) = 0.
2. Supposons que a; = 0 et que ay > 0. Alors dans ce cas (’hypothése as # 0 est fondamentale),

2
f(z) —ag L an (x—a)”.
Or deux équivalents ont le méme signe au voisinage du point considéré, donc il existe J un voisinage de a tel
que

Vo € J, flx)—ap >0 ie. f(z) = ao.

Or puisque f admet un développement & lordre 0 en a, on a ag = f(a) (vrai uniquement pour l'ordre 0 et 1)
et donc
veeld,  f(x)> fa)

Conclusion, dans ce cas, a est bien un minimum local. On traite le cas as < 0 de la méme facon.
a

Remarque 39 : En particulier, si f est €2, par la formule de Taylor-Young, f(z) = f(a)+ f'(a)(z—a) +
r—a

1 2 2 . ’ .
7@ g +o((xz —a)”). Donc pour la recherche d’extrema, on retrouve bien la démarche suivante : on commence
p) 1% s

par chercher les points critiques avec la dérivée premiére puis on peut chercher a savoir si ¢’est un extremum local ou
non a 'aide du signe de la dérivée seconde en a.
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V Complément sur la domination

- )

Soient (un),eny (Vn), ey deux suites a valeurs dans K, a € R, I un voisinage de a et f et g deux éléments de

F (I,K).

o Fonctions : on dit que f est dominée par g en a, noté f(z) = O (g(x)) (f est un grand o de g en a) si et
r—a

seulement si f
la fonction = est bornée au voisinage de a.
g
o Suites : on dit que (uy,),cy est dominée par (v,), y noté u, = O(vy,) (uy, est un grand o de v,) si et
n—-+0oo
seulement si

. (2 2
la suite (—n) est bornée.
Un / neN

1. Suites :siu, = o(v,) alorsu, = O(vy).
n—-+oo n——+o00
= o(g()) alors f(z) = O(g(x).

Suites : st u, ~ wvpalorsu, = O(uvy,).
n—-4oo n—+4oo

Fonctions : si f(x) o g(x) alors f(z) . O (g(z)).

Fonctions : si f(x)

Suites : Uy, et O(1) si et seulement si la suite (uy,),, oy est bornée.

& & o 8 W

Fonctions : f(x) = O (1) si et seulement si la fonction f est bornée sur un voisinage de a.
T—a

\. J

— A

1. (Transitivité) Si u, = O(vy) et v, = O(wy),alors u, = O(wy,).

n—-+oo n—-+oo

2. (Somme) Si uy, = O(wy,) et vy, = O(wy,) alors uy, + vy, = O(wy,). Autrement dit
n—+oo n—r—+oo n——+00

O (wy,) + O (wy,) v O (wy,) .

—+0o0
3. (Produit) Siu, = O(w,)etv, = O(t,) alorsu,v, = O(wyt,). Autrement dit
n—-+oo n—-+oo n—-+oo
O (wy,) O () T O (wyty,) .
4. (Absorption) Si u, e O(vy,) alors pour tout A # 0, A u, e O (vy,) et uy, e O (Avy,). Autrement
dit
A0 (vy,) e O (Awvy) e O (vy,) .
Exemple 40 :
. 2 _ 2
sin(n)n T O (n?).

o cos(z) =, 1- 12—2 + 0 ().
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HARDY Godfrey (Cranleigh (Angleterre) 1877 - Cambridge 1947) entra au Trinity
College de Cambridge en 1896 o1 il se tourna vers les mathématiques en découvrant le
« Cours d’analyse » de Jordan. Il y enseigna d partir de 1906 avant d’obtenir un poste a
Ozford en 1919. Aprés un court séjour a Princeton, il revint a Cambridge et y demeurera
jusqu’a sa retraite en 1942. Les mathématiques de Hardy étaient toujours orientées vers
la théorie des nombres mais pour parvenir d ses fins, il établit d’importants résultats
en analyse. Il découvrit, indépendamment du physicien Weinberg, la loi portant leurs
deuz noms décrivant l’équilibre génétique au sein d’une population. Son résultat le plus
célébre fut de démontrer que la fonction ( de Riemann admet une infinité de zéros
de partie réelle 1/2. Il travailla avec Littlewood avec qui il établit une méthode pour
décrire le comportement asymptotique d’une suite particuliére d’entiers. Il échangea
avec le mathématicien Ramanujan, grand prodige autodidacte indien qu’Hardy fit venir
en Angleterre.

Hardy contribua da rendre les mathématiques britanniques plus rigoureuses et grace a son rayonnement unique fut ['un
des représentants majeurs des mathématiques anglaises du XXiéme siécle.

Hardy introduit la notation < pour signifier la négligeabilité. Notation qu’il abandonnera rapidement pour la notation
de Landau o. La notation < est due a Vinogadrov en 1930.

Lors d’un cours au Trinity Collége, Hardy énonce un résultat et affirme : « La démonstration est évidente! » Mais
son assurance se transforme en doute, il se gratte la téte et dit : « Au fait, est-ce évident ? ». Il se met a tourner en
répétant « Est-ce évident ? » Il sort alors de la salle et revient quelques minutes plus tard en affirmant « Oui, c¢’était
évident! ».

Profondément athée, Hardy était férocement opposé a la religion et a l’idée de Dieu. Paradoxalement, cette posture l’a
poussé a donner corps au personnage dont il voulait nier ’existence. Il s’amusait donc a venir au match de cricket
avec un parapluie et une liasse de papiers pour faire croire a Dieu qu’il souhaitait 'annulation du match pour travailler
ses mathématiques. En tant que pire ennemi de Hardy, Dieu lui refuserait cette joie et lui enverrait donc du soleil...
Dans ce méme esprit, une anecdote désormais célébre, raconte qu’avant d’effectuer une traversée par gros temps du
Danemark a I’Angleterre, Hardy envoya une carte postale ¢ Bohr en lui écrivant : « Ai preuve de [’hypothése de
Riemann. Carte trop petite pour démonstration. » Hardy savait ainsi que Dieu épargnerait son navire afin de ne
pas lui donner l'immense gloire de faire croire a la communauté mathématique qu’il avait démontré I’hypothese de
Riemann.

Comme d son habitude, le professeur a donné un trés (trop ?) long devoir maison d faire : une montagne de dévelop-
pements limités a faire. Manque de chance, cela tombe pendant les vacances : Noél, le nouvel an, le ski, la conjecture
actuelle, tout ¢a... Bref l’étudiant se retrouve en peine de finir tous les calculs la veille (naturellement...) de la date
limite. Il introduit donc proprement les notations, donne les développements limités usuels qui permettent de démarrer,
précise a laide de la factorisation d quel ordre il faut pousser le calcul, rédige les cing premiéres lignes et anticipe la
suite du calcul en ne justifiant que les points essentiels et difficiles que devront présenter la démonstration. Il laisse
malheureusement sa démonstration inachevée mais écrit sur sa copie « La preuve est laissée en exercice. Le correcteur
vérifiera aisément par le calcul que le reste du raisonnement est trivial. » La semaine suivante (ou trois semaines
plus tard...) il recoit son devoir corrigé. Il remarque alors que six pages annexes ont été agrafées a larriére de sa
copie. Il examine ces pages et découvre alors avec surprise la preuve compléte décrite étape par étape. Tout d la fin,
le correcteur a écrit au rouge : « J'ai fait une petite erreur sans importance. Moins 5. »
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