
Mathématiques PTSI, Chapitre XII 2025-2026

Chapitre XII : Analyse Asymptotique

Dans tout ce paragraphe K désigne R ou C, I un intervalle de R d’intérieur non vide i.e. ni vide ni un singleton. On
note R = R ∪ {+∞} ∪ {−∞}. On dit que I est un voisinage de a ∈ R = R ∪ {+∞} ∪ {−∞} si a ∈ I ou a = sup(I)
ou a = inf(I).

I Négligeabilité - Rappel
I.1 Définition

• Fonctions : Soient a ∈ R, I un voisinage de a et f et g ∈ F (I,K). On suppose que ∀x ∈ I, g (x) ̸= 0. On dit
que f est négligeable devant g en a, noté f(x) =

x→a
o (g(x)) ou encore f(x) ≪

x→a
g(x) si et seulement si

lim
x→a

f (x)
g (x) = 0.

• Suites : Soient (un)n∈N et (vn)n∈N ∈ KN. On suppose que ∀n ∈ N, vn ̸= 0. On dit que (un)n∈N est négligeable
devant (vn)n∈N, noté un =

n�+∞
o (vn) ou encore un ≪

n�+∞
vn si et seulement si

lim
n→+∞

un

vn
= 0

Définition I.1

Remarque 1 : Il n’est pas indispensable de supposer g (ou (vn)n∈N) jamais nul. Une définition plus formelle permet
de traiter le cas où g (ou (vn)n∈N) s’annule mais cette définition est bien plus lourde et souvent peu pratique pour
notre usage. La voici : il existe ε : I → K telle que ∀x ∈ I, f(x) = ε(x)g(x) et telle que ε(x) −→

x→a
0.

Remarque 2 :
• Pour une suite la variable n tend nécessairement vers +∞. Ce n’est pas forcément le cas pour les fonctions.
• Dans la définition de la négligeabilité pour les fonctions, a ∈ R n’est pas nécessairement un élément de I et peut

même être égal à ±∞.
• La négligeabilité f(x) =

x→a
o (g(x)) est aussi parfois notée f = oa (g) ou f(x) = ox→a (g(x)).

Remarque 3 : IMPORTANT : on a toujours :

f(x) =
x→a

o(1) ⇔ lim
x→a

f(x) = 0

un =
n→+∞

o(1) ⇔ lim
n→+∞

(un)n∈N = 0.

Exemple 4 :

1. x2 =
x→+∞

o
(
x4), 2. x4 =

x→0
o
(
x2), 3. 1

x2 =
x→+∞

o

Å 1
x

ã
,

4. 1
x

=
x→0

o

Å 1
x2

ã
. 5. x =

x→+∞
o (ex). 6. x =

x→0
o (ex)

7. n =
n→+∞

o
(
n2), 8. 2n =

n→+∞
o (3n), 9. 1

n2 =
n→+∞

o

Å 1
n

ã
,

Interprétation. Les petits o permettent de formaliser l’idée suivant laquelle les suites ou les fonctions en un point
ont une « vitesse » de convergence et de comparer ces vitesses. Par exemple :

• Si deux fonctions f , g converge vers 0 en a et si f (x) =
x→a

o (g(x)), on dira que la fonction f converge plus vite
vers 0 que la fonction g en a.

• De même si deux suites (un)n∈N et (vn)n∈N convergent vers 0, et si un =
n→+∞

o(vn), on dira que la suite (un)n∈N

converge plus vite vers 0 que (vn)n∈N.
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• A l’inverse, si deux fonctions f , g tendent vers +∞ en a et si f(x) =
x→a

o (g(x)), on dira que la fonction g tend
plus vite vers +∞ que la fonction f en a.

• De même, si deux suites (un)n∈N, (vn)n∈N divergent vers +∞ et si un =
n→+∞

o(vn) on dira que (vn)n∈N diverge
plus vite vers +∞ que (un)n∈N (notez l’inversion de la rapidité par rapport au cas de la convergence vers 0).

Attention ne confondez pas ordre de majoration et vitesse. Par exemple la suite (un)n∈N = (2n)n∈N est toujours plus
grande que la suite (vn)n∈N = (n)n∈N mais bien que (un)n∈N diverge « deux fois plus rapidement » que (vn)n∈N, il
est faux d’affirmer que vn ≪

n→+∞
un. On dira plutôt que les suites (un)n∈N et (vn)n∈N ont des vitesses de divergence

comparables (à un facteur 2 près). Pour être négligeable il faut donc diverger/converger « beaucoup moins rapidement ».

I.2 Croissances comparées

Soient A ∈ K∗, (α, β, a, b) ∈
(
R∗

+
)4, (c, γ) ∈]1; +∞[2.

1. En +∞, on a

0 ≪
x→+∞

1
γx

≪
x→+∞

1
xβ

≪
x→+∞

1
lnα(x) ≪

x→+∞
A ≪

x→+∞
lna(x) ≪

x→+∞
xb ≪

x→+∞
cx ≪

x→+∞
xx.

2. En 0, on a
0 ≪

x→0
xα ≪

x→0
A ≪

x→0
|ln(x)|a ≪

x→0

1
xb

.

3. Pour les suites, on a

0 ≪
n→+∞

1
γn

≪
n→+∞

1
nβ

≪
n→+∞

1
lnα(n) ≪

n→+∞
A ≪

n→+∞
lna(n) ≪

n→+∞
nb ≪ cn ≪

n→+∞
n! ≪

n→+∞
nn.

Proposition I.2 (Croissances comparées)

Remarque 5 : Nul n’est négligeable devant la suite/fonction nulle.

Démonstration. Tout ces résultats sont des conséquences des limites connues de croissances comparées. Exemple :

limx→+∞
xb

cx = limx→+∞ xb e−x ln(c). Or − ln(c) < 0 donc lim
x→+∞

xb

cx
= lim

t→−∞
|t|b eln(c)t = 0 ce qui implique par

définition que xb =
x→+∞

o (cx).
Seul l’encadrement du factoriel reste à démontrer.

• Montrons que (cn)n∈N est négligeable devant (n!)n∈N avec c > 1, i.e. que la suite (un)n∈N =
Ä

cn

n!

ä
n∈N

converge
vers 0 en +∞. Notez que (un)n∈N est bien définie car pour tout n ∈ N, n! ⩾ 1 > 0. Il existe n0 ∈ N tel que
n0 ⩾ c (prendre par exemple ⌊c⌋ + 1). Donc pour tout n ⩾ n0 + 1 ⩾ c, on a

un =
n∏

k=1

c

k
=

n0∏
k=1

c

k︸ ︷︷ ︸
=An0

n∏
k=n0+1

c

k
.

Pour tout k ⩾ n0 + 1 ⩾ c, on a c
k ⩽ 1. Donc, par positivité des termes manipulés, pour tout n ⩾ n0 + 1 ⩾ c,

un ⩽ An0 ×
n∏

k=n0+1
1 = An0 ,

où An0 =
∏n0

k=1
c
k est un réel qui ne dépend que de n0 et non de n. Donc (un)n∈N est minorée par 0 et majorée

par An0 à partir de n = n0 + 1. Soit n ⩾ n0 + 2, on a alors

0 ⩽ un = un−1 × c

n
⩽ An0 × c

n
, car c

n
> 0 et un−1 ⩽ An0 .

Donc par le théorème d’encadrement
lim

n→+∞
un = 0.

et donc cn = o (n!).
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• Montrons maintenant que (n!)n∈N est négligeable devant (nn)n∈N∗ . Pour tout n ∈ N∗, nn > 0 donc nous allons
montrer que la suite (un)n∈N =

(
n!
nn

)
n∈N∗ converge vers 0. Pour tout n ⩾ 2, on a

0 ⩽ un =
n∏

k=1

k

n
=
(

n∏
k=2

k

n

)
× 1

n
⩽

(
n∏

k=2
1
)

1
n

= 1
n

.

Par le théorème d’encadrement, on en déduit donc que lim
n→+∞

un = 0 et donc n! = o (nn).
□

Soient (p, q) ∈ Z2, q < p alors

1. xq =
x→+∞

o (xp) 2. xp =
x→0

o (xq) 3. nq =
n→+∞

o (np) 4. 1
np =

n→+∞
o
( 1

nq

)
Proposition I.3

I.3 Propriétés algébriques des petits o

Exemple 6 : Transitivité et somme. On a les égalités asymptotiques suivantes :

1. o
(
x3)+ o

(
x2) =

x→+∞
o
(
x3) 2. o

(
x3)+ o

(
x2) =

x→0
o
(
x2)

3. o (en) + o
(
n10)+ o (e−n) + o

(
e2n
)

=
n→+∞

o
(
e2n
)

4. o (ln(x)) + o
(
x10)+ o (e−x) =

x→0
o (ln(x))

5. o (arctan(x)) + o (
√

x) + o (ln(x)) + ln(x) =
x→+∞

o (
√

x) 6. o (sin(x)) + o (1) + o
(
x2)+ x4 =

x→0
o (1)

Exemple 7 : Transitivité et somme. On a les égalités asymptotiques suivantes :

1. o (3x + 4x + 13 + cos(x)) =
x→+∞

o (4x) 2. o
(
o
(
o
(
x2))) =

x→0
o
(
x2)

3. o
(
3n4 − en +n! + 2

)
=

n→+∞
o (n!) 4. o

Ä
1

arctan(x) + x + 1√
x

ä
=

x→0
o
Ä

1
arctan(x)

ä
5. o

(
ln
(
5x2 + 4

)
+ o (ex) + ch(x)

)
=

x→+∞
o (ex) 6. o

(
4x2 + o (

√
x)
)

+ o (ln (x + 2) + ex) =
x→0

o (1)

Exemple 8 : Produit. On a les égalités asymptotiques suivantes :

1. o
(
5x2) o (−8x) =

x→+∞
o
(
x3) 2. 1

x5 o
(
x2) =

x→0
o
( 1

x3

)
3. 4no (3−no (3)) =

n→+∞
o
(( 4

3
)n)

4. Soit λ ∈ R, λ o
(
5x3 − 7x + 9

)
o
(
sin
(
x2)+ 2x

)
=

x→0

®
o (x) si λ ̸= 0
0 sinon

5. o (x ln(x)) o
( 1

x3

)
o (o (4x)) =

x→+∞
o
Ä

ln(x)
x

ä
6. o

(
5x + e3x

)
o (sin(x) +

√
x) o (arccos(x) + arcsin(x)) =

x→0
o (

√
x)

Remarque 9 : Attention, h (x) + o (g (x)) ̸= o (h(x) + g(x)) et de même pour les suites.
Remarque 10 : L’objectif et la force de l’analyse asymptotique est de ne garder que l’information utile la plus concise
du comportement de la fonction au voisinage du point considéré. On comparera alors nos fonctions avec des fonctions
de références très simples (polynômes surtout et même monôme, exponentielle, logarithme...).
Remarque 11 : On a

• Fonctions : Si f(x) =
x→a

o (g(x)) et g(x) →
x→a

0 alors f(x) →
x→a

0.

• Suites : Si un =
n→+∞

o (vn) et vn →
n→+∞

0 alors un →
n→+∞

0.

• Fonctions : Si f(x) =
x→a

o (g(x)) et f(x) →
x→a

+∞ alors g(x) →
x→a

+∞.

• Suites : Si un =
n→+∞

o (vn) et un →
n→+∞

+∞ alors vn →
n→+∞

+∞.

3/25



Mathématiques PTSI, Chapitre XII 2025-2026

Les réciproques sont fausses en général bien entendu !
Remarque 12 : Voici des manipulations importantes du petit o :

1. Pour tout n ∈ N (y compris 0), on a o (xn) →
x→0

0.

2. Soient n, m ∈ Z avec m ⩽ n. Si f(x) =
x→+∞

o (xm) alors f(x) =
x→+∞

o (xn).

3. Soient n, m ∈ Z avec m ⩽ n. Si f(x) =
x→0

o (xn) alors f(x) =
x→0

o (xm).

ATTENTION ! ! ! Les réciproques sont fausses en général. Méfiez-vous donc de l’égalité

o (xm) =
x→+∞

o (xn) ,

qui, si m ⩽ n, est vraie en la lisant de gauche à droite mais qui est fausse si on la lit de droite à gauche ! ! !

II Les équivalents - Rappel
II.1 Définition

• Fonctions : Soient a ∈ R, I un voisinage de a et f et g ∈ F (I,K). On suppose que ∀x ∈ I, g (x) ̸= 0. On dit
que f est équivalente à g en a, noté f(x) ∼

x→a
g(x) si et seulement si

lim
x→a

f (x)
g (x) = 1.

• Suites : Soient (un)n∈N ∈ KN et (vn)n∈N ∈ KN deux suites. On suppose que ∀n ∈ N, vn ̸= 0. On dit que
(un)n∈N est équivalente à (vn)n∈N, noté un ∼

n�+∞
vn si et seulement si

lim
n→+∞

un

vn
= 1.

Définition II.1

Remarque 13 : Nulle autre que la suite/fonction nulle est équivalente à la suite/fonction nulle. Il est INTERDIT
d’écrire un ∼

n→+∞
0 si (un)n∈N n’est pas la suite constante égale à 0 et INTERDIT d’écrire f(x) ∼

x→a
0 si f n’est pas

la fonction nulle. A bon entendeur...
Exemple 14 :

1. 1
n + 1

n2 ∼
n→+∞

1
n , 2. 3n + 2n ∼

n→+∞
3n,

3. x2 + x + 5 ∼
x→+∞

x2, 4. x + x2 ∼
x→0

x

II.2 Propriétés

La relation ∼ est une relation d’équivalence sur KN. Soient (un)n∈N, (vn)n∈N deux éléments de KN

1. ∼ est réflexive : un ∼
n→+∞

un.

2. ∼ est transitive :
ï
un ∼

n→+∞
vn et vn ∼

n→+∞
wn

ò
⇒ un ∼

n→+∞
wn.

3. ∼ est symétrique : un ∼
n→+∞

vn ⇔ vn ∼
n→+∞

un.

De même, ∼ est une relation d’équivalence sur F (I,K).

Proposition II.2
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• Fonctions : Soient f et g deux fonctions définies au voisinage de a. On a

f(x) ∼
x→a

g(x) ⇔ f(x) =
x→a

g(x) + o (g(x)) (ou encore g(x) =
x→a

f(x) + o (f(x))).

• Suites : Soient (un)n∈N et (vn)n∈N deux suites. On a l’équivalence suivante :

un ∼
n→+∞

vn ⇔ un =
n→+∞

vn + o(vn) (ou encore vn =
n→+∞

un + o(un)).

Proposition II.3

Remarque 15 :
• Attention un ∼

n→+∞
vn n’implique pas a priori que un − vn →

n→+∞
0 ! Par exemple : pour tout n ∈ N∗, un =

√
n

et vn =
√

n + ln(n).
• La réciproque est aussi FAUSSE : si un − vn →

n→+∞
0 cela n’implique pas que un ∼

n→+∞
vn. Par exemple : pour

tout n ∈ N∗, un = 1
n et vn = 1

n2 .

Exemple 16 :
1. sin(x) ∼

x→0
x i.e. sin (x) =

x→0
x + o (x)

2. ch (x) ∼
x→+∞

ex

2 i.e. ch (x) =
x→0

ex

2 + o (ex)

3. n3 + n =
n→+∞

n3 + o
(
n3) i.e. n3 + n ∼

n→+∞
n3

4. arctan (x) =
x→+∞

π
2 + o (1) i.e. arctan (x) ∼

x→+∞
π
2

Interprétation : La notion de suites (respectivement fonctions) équivalentes exprime donc le fait qu’au voisinage de
+∞ (au voisinage de a), l’écart relatif entre les termes un et vn (i.e un−vn

vn
) tend vers 0, (respectivement f(x)−g(x)

g(x) →
x→a

0). Intuitivement les deux suites (respectivement fonctions) ont alors la même « vitesse de convergence » en +∞
(respectivement au voisinage de a). Attention, avoir le même comportement ne signifie pas nécessairement avoir le
même graphe ni même des graphes qui se rapprochent.

Soient (un)n∈N et (vn)n∈N deux suites réelles. Soient a ∈ R, I un voisinage de a et f et g deux éléments de F (I,K).
1. Fonctions :

(a) Si f ∼
x→a

g alors les fonctions f et g ont le même comportement au voisinage de a :

• si l’une converge vers l l’autre aussi,
• si l’une diverge (vers ±∞ ou diverge tout court), l’autre aussi.

(b) Pour l ∈ R avec l ̸= 0 : f(x) →
x→a

l si et seulement si f ∼
x→a

l.

(c) Si f ∼
x→a

g alors les fonctions f et g ont le même signe au voisinage de a.

2. Suites :
(a) Si un ∼

n→+∞
vn alors les suites (un)n∈N et (vn)n∈N sont de même nature au voisinage de +∞ :

• si l’une converge vers un réel l ∈ R, l’autre aussi.
• si l’une diverge (vers ±∞ ou diverge tout court), l’autre aussi.

(b) Pour l ∈ R avec l ̸= 0 : un →
n→+∞

l si et seulement si un ∼
n→+∞

l.

(c) Si un ∼
n→+∞

vn alors les suites (un)n∈N et (vn)n∈N ont à partir d’un certain rang le même signe.

Proposition II.4

Remarque 17 : Attention, l’assertion suivante est FAUSSE en général :

lim
n→+∞

un = lim
n→+∞

vn ⇒ un ∼
n→+∞

vn

Par exemple, pour tout n ∈ N∗, un = 1
n et vn = 1

n2 .
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Soient (un)n∈N, (vn)n∈N, (wn)n∈N trois suites réelles. Soient a ∈ R, I un voisinage de a et f , g, h trois éléments de
F (I,K).

1. Fonctions : Si pour tout x ∈ I, f(x) ⩽ g(x) ⩽ h(x) et si f(x) ∼
x→a

h(x) alors f(x) ∼
x→a

g(x) ∼
x→a

h(x).

2. Suites : Si : ∃n0 ∈ N, ∀n ⩾ n0, un ⩽ vn ⩽ wn et si un ∼
n→+∞

wn alors un ∼
n→+∞

vn ∼
n→+∞

wn.

Théorème II.5 (Théorème d’encadrement pour les équivalents)

Démonstration. Démontrons le résultat sur les fonctions dans le cas où pour tout x ∈ I, h(x) > 0 (le cas pour tout
x ∈ I, h(x) < 0 se traite de même, le cas général du signe quelconque, voire variable, est plus technique). Dans ce cas
(et dans ce cas seulement)

∀x ∈ I,
f(x)
h(x) ⩽

f(x)
h(x) ⩽ 1.

Or f(x) ∼
x→a

h(x), autrement dit, lim
x→a

f(x)
h(x) = 1. Donc par le théorème d’encadrement (le classique celui sur les

limites), on en déduit que

lim
x→a

g(x)
h(x) = 1 i.e. g(x) ∼

x→a
h(x).

Par transitivité, on a également g(x) ∼
x→a

f(x).
□

II.3 Manipulation des équivalents

Exemple 18 : élimination des termes négligeables.
1. x3 − 18x2 + 2

√
x + 1 ∼

x→+∞
x3 2. en +n! + cos(n) + n

ln(n) ∼
n→+∞

n!

3. x3 + x arctan(x) + x
√

x + sin(x) ∼
x→0

x 4. x ln(x) + sh(x) + ex +4x2 ∼
x→0

1

Exemple 19 : produit, puissance, valeur absolue.
1. (ln(x) + 15)

(
ex +3x + x3) ∼

x→+∞
ln(x) ex 2.

√
n4 + 3n2 ln(n) + sin(n) ∼

n→+∞
n2

3.
∣∣sin(x) − 5x3 + sh2(x)

∣∣ ∼
x→0

|x| 4. (x+⌊x⌋+4x2)2

(arctan(x)+
√

x)12 ∼
x→+∞

16
x2

Si f(u) ∼
u→b

g(u) et si u(x) −→
x→a

b alors f (u(x)) ∼
x→a

g (u(x)).

Proposition II.6 (Changement de variable)

Exemple 20 :
1. arctan

( 1
x

)
∼

x→+∞
1
x 2. sin (1 + x) ∼

x→−1
1 + x

3. arcsin (e−x) ∼
x→+∞

e−x 4. e1+ 1
x + 1

ln(x) ∼
x→+∞

e1

1. La somme. L’assertion un ∼
n→+∞

vn et wn ∼
n→+∞

tn ⇒ un + wn ∼
n→+∞

vn + tn est FAUSSE en général
(de même pour les fonctions).

2. La composition (à gauche). L’assertion f(x) ∼
x→a

g(x) ⇒ φ(f(x)) ∼
x→a

φ(g(x)) est FAUSSE en
général (de même pour les suites).

Anti-Proposition II.7

Exemple 21 :
1. n +

√
n ∼

n→+∞
n et 3 − n ∼

n→+∞
−n mais n +

√
n + 3 − n =

√
n + 3 n’est pas équivalent à n − n = 0 !

2. x ∼
x→+∞

x + ln(x) mais ex n’est pas équivalent en +∞ à ex+ln(x) = x ex.

3. 1 + x ∼
x→+∞

1 mais ln (1 + x) n’est pas équivalent en 0 à ln (1) = 0.
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II.4 Equivalents usuels
Soient (a0, a1, . . . , an) ∈ Kn avec an ̸= 0, (bp, . . . , bn) ∈ Kn−p+1 avec bp ̸= 0 et α ∈ R.

n∑
k=p

akxk ∼
x→0

apxp
n∑

k=0
akxk ∼

x→+∞
anxn

ex ∼
x→0

1 ln(1 + x) ∼
x→0

x

(1 + x)α − 1 ∼
x→0

αx tan(x) ∼
x→0

x

cos(x) ∼
x→0

1 sin(x) ∼
x→0

x

ch(x) ∼
x→0

1 sh(x) ∼
x→0

x

arcsin(x) ∼
x→0

x arctan(x) ∼
x→0

x

ch(x) ∼
x→+∞

sh(x) ∼
x→+∞

ex

2 arctan(x) ∼
x→+∞

π
2

Exemple 22 : Déterminer un équivalent (le plus simple possible), de la suite (un)n∈N dont le terme général est donné
par

1. un = n2−2 ln(n)+3
n−1 2. un = sin

Ä
1

n2+n+1

ä
3. un = ln

(
1 + sin 1

n

)
III Développements limités
III.1 Définition

Soient I un voisinage de 0 et f : I → R. On dit que f admet un développement d’ordre n en 0, s’il existe
(a0, . . . , an) ∈ Rn+1

∀x ∈ I, f(x) =
x→0

n∑
k=0

akxk + o (xn)

Le polynôme x 7→
n∑

k=0
akxk est alors appelé la partie régulière du développement limité.

Définition III.1

Remarque 23 :
1. Cela signifie qu’au voisinage de 0, la fonction f « se comporte comme » la fonction polynomiale

∑n
k=0 akxk ou

encore que la fonction
∑n

k=0 akxk constitue la meilleure approximation à l’ordre n de la fonction f . Plus l’ordre
est important, meilleure sera l’approximation.

2. Naturellement cette approximation n’est valide a priori qu’au voisinage immédiat de 0 et ne présume rien de la
fonction dès que l’on s’éloigne un peu de 0.

Exemple 24 :
1. Un polynôme possède un développement limité à n’importe quel ordre. Exemple f(x) = 5x3 + 2x2 − 6 on a

f(x) =
x→0

−6 + 2x2 + o
(
x2) ou encore f(x) =

x→0
−6 + 2x2 + 5x3 + o

(
x27).
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2. Pour tout n ∈ N, on a
1

1 − x
=

x→0

n∑
k=0

xk + o (xn) .

Démonstration. Soit x ∈] − 1; 1[, on sait que
n∑

k=0
xk = 1 − xn+1

1 − x
= 1

1 − x
− xn+1

1 − x
.

c’est-à-dire
1

1 − x
=

n∑
k=0

xk + xn+1

1 − x
.

Or

lim
x→0
x ̸=0

xn+1

1−x

xn
= lim

x→0
x ̸=0

x

1 − x
= 0.

Par conséquent, xn+1

1−x =
x→0

o (xn) et donc

1
1 − x

=
x→0

n∑
k=0

xk + o (xn) .

□

3. En prenant −x dans l’exemple précédent, on obtient également pour tout n ⩾ 1,

1
1 + x

=
x→0

n∑
k=0

(−1)kxk + o (xn) .

Soit x0 ∈ R, I un voisinage de x0 et f une fonction définie sur I. Alors la fonction h 7→ f(x0 + h) est définie sur
J = {h ∈ R | h + x0 ∈ I }, un voisinage de 0. On dit que f admet un développement limité d’ordre n en x0 si la
fonction h 7→ f(x0 + h) admet un développement limité d’ordre n en 0, c’est-à-dire s’il existe des réels a0, . . . , an

tels que

f(x0 + h) =
h→0

n∑
k=0

akhk + o(hn).

En posant x = x0 + h, cette relation s’écrit aussi

f(x) =
x→x0

n∑
k=0

ak(x − x0)k + o((x − x0)n).

Définition III.2

Remarque 25 : Pour calculer un développement limité en x0, on peut toujours se ramener en 0. Les résultats du
cours sont donc énoncés en 0 et on peut (sauf mention contraire) les adapter en x0.
Exemple 26 : Donner le développement limité à l’ordre 3 en x0 = 2 de la fonction f(x) = 1

x .

III.2 Premières propriétés

Soient n ∈ N et f une fonction définie au voisinage de 0. Supposons qu’il existe I un voisinage de 0 et des réels
a0, . . . , an et b0, . . . , bn tels que

∀x ∈ I, f(x) =
x→0

n∑
k=0

akxk + o(xn) et f(x) =
x→0

n∑
k=0

bkxk + o(xn)

alors on a pour tout k ∈ J0, nK, ak = bk.

Proposition III.3 (Unicité)
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Démonstration. Procédons par l’absurde et supposons que (a0, . . . , an) ̸= (b0, . . . , bn). Soit r le premier indice entre
0 et n tel que ar ̸= br. On obtient alors pour I un voisinage de 0

∀x ∈ I, a0 + a1x + · · · + anxn + o (xn) = b0 + b1x + · · · + bnxn + o (xn)
⇒ ∀x ∈ I, arxr + ar+1xr+1 + · · · + anxn + o (xn) = brxr + br+1xr+1 + · · · + bnxn + o (xn)

⇒ ∀x ∈ I \ {0} , ar + ar+1x + · · · + anxn−r + o
(
xn−r

)
= br + br+1x + · · · + bnxn + o

(
xn−r

)
Donc en soulignant le fait que n − r ⩾ 0 et en passant à la limite quand x → 0, on obtient alors que

ar = br,

ce qui contredit l’hypothèse initiale et achève la démonstration.
□

Soient (n, m) ∈ N2, tel que m ⩽ n. Si f admet un développement limité d’ordre n en 0 alors elle admet un
développement limité d’ordre m. Plus précisément, si

∀x ∈ I, f(x) =
x→0

n∑
k=0

akxk + o(xn)

est un développement limité d’ordre n de f alors

∀x ∈ I, f(x) =
x→0

m∑
k=0

akxk + o(xm)

est un développement limité d’ordre m de f .

Proposition III.4 (Troncature)

Démonstration. Soit I un intervalle contenant 0 et f une fonction définie sur I telle que

f(x) =
x→0

n∑
k=0

akxk + o(xn) =
x→0

a0 + a1x + a2x2 + · · · + anxn + o (xn)

=
x→0

a0 + a1x + a2x2 + · · · + amxm + am+1xm+1 + · · · + anxn + o (xn)︸ ︷︷ ︸
=g(x)

.

De plus on remarque que

g(x)
xm

= am+1xm+1 + · · · + anxn + o (xn)
xm

= am+1x + · · · + anxn−m + o
(
xn−m

)
−→
x→0

0.

Par conséquent, g(x) =
x→0

o (xm) et on a bien f(x) =
x→0

∑m
k=0 akxk + o(xm).

□

Attention, ce résultat n’est vrai qu’en 0.
Soit f une fonction admettant un développement limité en 0 d’ordre n ∈ N de partie régulière P (x) =

∑n
k=0 akxk.

1. Si f est paire alors P (x) ne contient que des puissances paires de x.
2. Si f est impaire alors P (x) ne contient que des puissances impaires de x.

Proposition III.5

Démonstration. Soit f une fonction paire définie sur un intervalle I centré en 0 (et non réduit à {0}) ayant un
développement limité en 0 d’ordre n : il existe (a0, a1, . . . , an) ∈ Rn+1,

f(x) =
x→0

a0 + a1x + · · · + anxn + o (xn) =
x→0

n∑
k=0

akxk + o (xn) .

Puisque I est centré en 0, pour tout x ∈ I, on a −x ∈ I et par conséquent, on a également

f(−x) =
x→0

a0 − a1x + · · · + (−1)nanxn + o ((−1)nxn) =
x→0

n∑
k=0

(−1)kakxk + o ((−1)nxn) .
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La fonction f est paire donc ∀x ∈ I, f(−x) = f(x). De plus si n est pair, (−1)nxn = xn et si n est impair
o ((−1)nxn) = o (−xn) = o (xn) (cf Proposition I.5). Dans tous les cas,

∀x ∈ I, f(x) =
x→0

a0 − a1x + · · · + (−1)nanxn + o (xn) =
x→0

n∑
k=0

(−1)kakxk + o (xn) .

Donc par unicité du développement limité, on a pour tout k ∈ J0; nK, ak = (−1)kak. Notamment si k ∈ J1; nK est
impair, alors ak = −ak et donc ak = 0. Ceci démontre bien le premier point de la proposition. On procède de même
pour le cas où f est impaire.

□

Soit f une fonction définie sur I un voisinage de 0 (éventuellement I est privé de 0).
1. La fonction f admet un développement limité d’ordre 0 en 0 si et seulement si f est continue en 0 (ou

prolongeable par continuité si elle n’est pas définie en 0). Son développement limité est alors donnée par

f(x) =
x→0

f(0) + o (1) .

2. La fonction f admet un développement limité d’ordre 1 en 0 si et seulement si f est dérivable en 0. Son
développement limité est alors donnée par

f(x) =
x→0

f(0) + f ′(0)x + o (x) .

3. Si f est de classe C n sur un voisinage de 0 alors f admet un développement d’ordre n en 0.

Proposition III.6 (DL et continuité ou dérivabilité)

Démonstration.
1. La fonction f admet un développement d’ordre 0 en 0 si et seulement si

∃I un voisinage de 0, ∃a0 ∈ R, ∀x ∈ I, f(x) =
x→0

a0 + o (1)

⇔ ∃I un voisinage de 0, ∃a0 ∈ R, ∀x ∈ I, f(x) − a0 =
x→0

o (1)

⇔ ∃a0 ∈ R, lim
x→0

f(x) − a0 = 0

⇔ ∃a0 ∈ R, lim
x→0

f(x) = a0.

La dernière assertion est la définition de la continuité de f en 0, ce qui démontre le premier point.
2. Si la fonction f admet un développement d’ordre 1 en 0 alors

∃I un voisinage de 0, ∃a0, a1 ∈ R, ∀x ∈ I, f(x) =
x→0

a0 + a1x + o (x) .

En particulier la fonction f admet un développement limité d’ordre 0 en 0 (cf la Proposition III.5) et d’après le
premier point, f est continue en 0 et de plus f(0) = a0. On a alors

∀x ∈ I, f(x) − f(0) − a1x =
x→0

o (x) ⇔ ∀x ∈ I \ {0},
f(x) − f(0)

x
− a1 =

x→0
o (1) .

Par conséquent,
lim
x→0
x ̸=0

f(x) − f(0)
x

− a1 = 0 ⇔ lim
x→0
x ̸=0

f(x) − f(0)
x

= a1.

Ainsi, on en déduit que la fonction f est dérivable en 0 et de plus f ′(0) = a1 et donc son développement limité
est

∀x ∈ I, f(x) =
x→0

f(0) + f ′(0)x + o (x) .

Réciproquement, si f est dérivable en 0 alors par définition,

lim
x→0
x ̸=0

f(x) − f(0)
x

= f ′(0).
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Par conséquent, il existe I un voisinage de 0 tel que

∀x ∈ I,
f(x) − f(0)

x
=

x→0
f ′(0) + o (1)

ou encore tel que
∀x ∈ I, f(x) =

x→0
f ′(0)x + xo (1) + f(0) = f(0) + f ′(0)x + o (x) .

Donc f admet bien un développement limité d’ordre 1 en 0.
3. Admis pour l’instant c’est un corollaire du Théorème de Taylor-Young que nous allons voir un peu plus tard

dans le chapitre.
□

Contre-exemple. La réciproque du dernier point est faux en général. Si f admet un développement d’ordre n en 0,
la fonction f n’est pas nécessairement de classe C n au voisinage de 0. Soit

f : R → R

x 7→
®

x + x3 sin
( 1

x2

)
si x ̸= 0

0 si x = 0.

On a x sin
( 1

x2

)
−→
x→0

0. Donc x sin
( 1

x2

)
=

x→0
o (1). Par conséquent,

∀x ∈ R, f(x) =
x→0

x + x2o (1) =
x→0

x + o
(
x2) .

Donc f admet un développement limité d’ordre 2 en 0. Cependant la fonction f n’est pas C 1 sur R. En effet, on sait
que f est dérivable sur R∗ comme somme et composée de fonctions dérivables sur R∗ et pour tout x ∈ R∗,

f ′(x) = 1 + 3x2 sin
Å 1

x2

ã
− 2x3

x3 cos
Å 1

x2

ã
= 1 − 2 cos

Å 1
x2

ã
+ 3x2 sin

Å 1
x2

ã
.

On remarque que f ′ n’admet pas de limite en 0 donc f n’est pas C 1 malgré le fait qu’elle possède un développement
limité d’ordre 2.

III.3 Développements limités usuels
Les fonctions suivantes sont C ∞ au voisinage de 0 et admettent donc des développements limités de tout ordre. Soit
n ∈ N.
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ex =
x→0

1 + x + x2

2 + · · · + xn

n! + o (xn) =
x→0

n∑
k=0

xk

k! + o (xn).

sh(x) =
x→0

x + x3

6 + · · · + x2n+1

(2n+1)! + o
(
x2n+1) =

x→0

n∑
k=0

x2k+1

(2k + 1)! + o
(
x2n+1).

ch(x) =
x→0

1 + x2

2 + · · · + x2n

(2n)! + o
(
x2n
)

=
x→0

n∑
k=0

x2k

(2k)! + o
(
x2n
)
.

sin(x) =
x→0

x − x3

6 + · · · + (−1)nx2n+1

(2n+1)! + o
(
x2n+1) =

x→0

n∑
k=0

(−1)kx2k+1

(2k + 1)! + o
(
x2n+1).

cos(x) =
x→0

1 − x2

2 + · · · + (−1)nx2n

(2n)! + o
(
x2n
)

=
x→0

n∑
k=0

(−1)kx2k

(2k)! + o
(
x2n
)
.

arctan(x) =
x→0

x − x3

3 + x5

5 + · · · + (−1)nx2n+1

2n+1 + o
(
x2n+1) =

x→0

n∑
k=0

(−1)k
x2k+1

2k + 1 + o
(
x2n+1).

1
1−x =

x→0
1 + x + x2 + · · · + xn + o (xn) =

x→0

n∑
k=0

xk + o (xn).

1
1+x =

x→0
1 − x + x2 + · · · + (−1)n

xn + o (xn) =
x→0

n∑
k=0

(−1)k
xk + o (xn).

ln(1 + x) =
x→0

x − x2

2 + · · · + (−1)n+1xn

n + o (xn) =
x→0

n∑
k=1

(−1)k+1xk

k
+ o (xn).

ln(1 − x) =
x→0

−x − x2

2 − · · · − xn

n + o (xn) =
x→0

−
n∑

k=1

xk

k
+ o (xn).

(1 + x)α =
x→0

1 + αx + α(α−1)
2! x2 + · · · + α(α−1)···(α−n+1)

n! xn + o (xn)

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5)
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IV Manipulation des développements limités
IV.1 Somme et produit

Soient f et g deux fonctions ayant un développement limité d’ordre n en 0. Notons P et Q leurs parties régulières
(ce sont donc des polynômes d’ordre au plus n) : pour tout x ∈ I, où I est un voisinage de 0,

f(x) =
x→0

P (x) + o (xn) et g(x) =
x→0

Q(x) + o (xn) .

1. La fonction f + g admet un développement limité d’ordre n en 0 donné par

∀x ∈ I, f(x) + g(x) =
x→0

P (x) + Q(x) + o (xn) .

2. La fonction fg admet un développement limité d’ordre n en 0 donné par

∀x ∈ I, f(x)g(x) =
x→0

R(x) + o (xn) .

où R est le polynôme PQ tronqué à l’ordre n.

Proposition IV.1 (somme et produit de DL)

Démonstration. Supposons que pour tout x ∈ I, f(x) =
x→0

P (x) + o (xn) et que pour tout x ∈ I, g(x) =
x→0

Q(x) + o (xn).
1. Alors, pour tout x ∈ I,

f(x) + g(x) =
x→0

P (x) + o (xn) + Q(x) + o (xn) =
x→0

P (x) + Q(x) + o (xn) + o (xn)︸ ︷︷ ︸
≪xn

=
x→0

P (x) + Q(x) + o (xn) .

2. De plus, le polynôme PQ est de degré inférieur ou égal à 2n : PQ = α0 + α1X + · · · + α2nX2n. Si R est la
troncature de ce polynôme à l’ordre n :

PQ(X) = R(x) + αn+1Xn+1 + · · · + α2nX2n.

Alors, pour tout x ∈ I,

f(x)g(x) =
x→0

P (x)Q(x) + P (x)o (xn)︸ ︷︷ ︸
≪xn

+ Q(x)o (xn)︸ ︷︷ ︸
≪xn

+ o (xn) o (xn)︸ ︷︷ ︸
≪xn

=
x→0

P (x)Q(x) + o (xn) + o (xn) + o (xn)︸ ︷︷ ︸
≪xn

=
x→0

R(x) + αn+1xn+1 + · · · + α2nx2n + o (xn)︸ ︷︷ ︸
≪xn

=
x→0

R(x) + o (xn) .

□

Exemple 27 :
1. Calculons un DL3(0) de la fonction f : x 7→ 1

1−x − ex. La fonction f est définie sur ] − ∞; 1[∪]1; +∞[. De plus
pour tout x ∈] − ∞; 1[, on a

f(x) =
x→0

(
1 + x + x2 + x3 + o

(
x3))−

Å
1 + x + x2

2 + x3

6 + o
(
x3)ã =

x→0

x2

2 + 5x3

6 + o
(
x3) .

ATTENTION ! Les petits o ne disparaissent pas !
2. Calculons un DL3(0) de la fonction g : x 7→ cos(x)√

1+x
. La fonction g est définie sur ] − 1; +∞[ de plus pour tout
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x ∈] − 1; +∞[, on a

cos(x) =
x→0

1 − x2

2 + o
(
x3)

1√
1 + x

= (1 + x)−1/2 =
x→0

1 − 1
2x +

(
− 1

2
) (

− 1
2 − 1

)
2 x2 +

(
− 1

2
) (

− 1
2 − 1

) (
− 1

2 − 2
)

6 x3 + o
(
x3)

=
x→0

1 − x

2 +
3
4
2 x2 −

3×5
2×2×2

6 x3 + o
(
x3)

=
x→0

1 − x

2 + 3
8x2 − 5

16x3 + o
(
x3) .

Par conséquent, pour tout x ∈] − 1; +∞[,

g(x) = cos(x) × 1√
1 + x

=
x→0

Å
1 − x2

2 + o
(
x3)ãÅ1 − x

2 + 3
8x2 − 5

16x3 + o
(
x3)ã

=
x→0

1 − x
2 + 3

8 x2 − 5
16 x3 +o

(
x3)

− x2

2 + x3

4 − x2

2
( 3

8 x2 − 5
16 x3 + o

(
x3))

+o
(
x3) (1 − x

2 + 3
8 x2 − 5

16 x3 + o
(
x3))

=
x→0

1 − x

2 − x2

8 − x3

16 + o
(
x3) .

Remarque 28 : Lorsque l’on cherche un développement limité d’ordre n d’un produit fg, il n’est pas toujours utile
de calculer un développement limité d’ordre n de f et de g (cela peut être long). Il faut connaître le degré du premier
terme non nul de la partie régulière de f et de g par exemple p et q, et factoriser par le terme prépondérant :

f(x) =
x→0

xp (1 + . . .)︸ ︷︷ ︸
=u(x)

et g(x) =
x→0

xq (1 + . . .)︸ ︷︷ ︸
=v(x)

pour alors anticiper que pour obtenir un développement limité de f(x)g(x) =
x→0

xp+qu(x)v(x) d’ordre n, un dévelop-
pement d’ordre n − p − q de u et de v suffira. Autrement dit un développement limité d’ordre n − q pour f et un
développement d’ordre n − p pour g suffiront.
Exemple 29 : Calculons un DL6(0) de la fonction f : x 7→ sin2(x) ln

(
1 + x2). La fonction f est définie sur R de

plus pour tout x ∈ R, on a sin(x) = x (1 + . . .). Nous aurons donc sin2(x) = x2 (1 + . . .). D’autre part, ln
(
1 + x2) =

x2 (1 + . . .). Par conséquent nous aurons f(x) = x4 (1 + . . .). On voit ainsi que pour obtenir un DL d’ordre 6 pour f ,
des DL d’ordre 2 seulement suffiront pour les termes notés (1 + . . .). Pour tout x ∈ R, on a

sin(x) =
x→0

x − x3

6 + o
(
x3) = x

Å
1 − x2

6 + o
(
x2)ã .

Donc

sin2(x) =
x→0

x2
Å

1 − x2

6 + o
(
x2)ã2

=
x→0

x2
Å

1 − x2

6 + o
(
x2)ãÅ1 − x2

6 + o
(
x2)ã

=
x→0

x2

á
1 − x2

6 +o
(
x2)

− x2

6 − x2

6

Ä
− x2

6 + o
(
x2)ä

+o
(
x2) Ä1 − x2

6 + o
(
x2)ä

ë
=

x→0
x2
Å

1 − x2

3 + o
(
x2)ã .

D’autre part, pour tout u > −1,

ln(1 + u) =
u→0

u − u2

2 + u3

3 + o
(
u2) =

u→0
u

Å
1 − u

2 + u2

3 + o
(
u2)ã .

Par conséquent, avec u = x2 −→
x→0

0 (cf la proposition ci-dessous pour la composée de développement limité) on a pour
tout x ∈ R,

ln
(
1 + x2) =

x→0
x2
Å

1 − x2

2 + x4

3 + o
(
x4)ã =

x→0
x2
Å

1 − x2

2 + o
(
x2)ã .
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Ainsi, pour tout x ∈ R,

f(x) =
x→0

x4
Å

1 − x2

3 + o
(
x2)ãÅ1 − x2

2 + o
(
x2)ã =

x→0
x4

á
1 − x2

2 +o
(
x2)

− x2

3 +o
(
x2)

+o
(
x2)
ë

=
x→0

x4
Å

1 − 5
6x2 + o

(
x2)ã

=
x→0

x4 − 5
6x6 + o

(
x6) .

IV.2 Composée et quotient

Soient n ∈ N et f et u deux fonctions définies au voisinage de 0. On suppose que
1. la fonction f admet un développement limité d’ordre n en 0,
2. la fonction u admet un développement limité d’ordre n en 0,
3. lim

x→0
u(x) = 0.

Alors, en notant P la partie régulière de u et Q la partie régulière de f :

u(x) =
x→0

P (x) + o (xn) et f(x) =
x→0

Q(x) + o (xn) ,

on obtient que la fonction f ◦ u admet également un développement limité d’ordre n en 0 dont la partie régulière
R est obtenue en tronquant à l’ordre n le polynôme Q ◦ P .

Proposition IV.2 (admis)

Exemple 30 : Calculons un DL3(0) de la fonction f : x 7→ esin(x). La fonction f est définie sur R. D’une part pour
tout u ∈ R, on a

eu =
u→0

1 + u + u2

2 + u3

6 + o
(
u3) .

Posons pour tout x ∈ R,

u(x) = sin(x) =
x→0

x − x3

6 + o
(
x3) .

On note que u(x) ∼
x→0

x donc u3(x) ∼
x→0

x3 et donc o
(
u3(x)

)
=

x→0
o
(
x3) et u3(x) =

x→0
x3 + o

(
x3). De plus,

u2(x) =
x→0

Å
x − x3

6 + o
(
x3)ãÅx − x3

6 + o
(
x3)ã =

x→0
x2 + o

(
x3) .

Puisque lim
x→0

u(x) = 0, on a par conséquent,

esin(x) =
x→0

1 + u(x) + u(x)2

2 + u(x)3

6 + o
(
u(x)3)

=
x→0

1 + x − x3

6 + o
(
x3)+

x2 + o
(
x3)

2 +
x3 + o

(
x3)

6 + o
(
x3)

=
x→0

1 + x + x2

2 + o
(
x3) .

Si f est la fonction définie par x 7→ 1
1−x et si u est une fonction ayant un développement limité d’ordre n en 0 et

vérifie lim
x→0

u(x) = 0, alors f ◦ u admet un développement limité d’ordre n en 0 et

f ◦ u(x) = 1
1 − u(x) =

x→0
1 + u(x) + u2(x) + · · · + un(x) + o (xn) ,

où en développant les puissances de u, on ne gardera que les monômes de degré inférieur ou égal à n.

Corollaire IV.3 (quotient)

Exemple 31 :
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1. Donner un DL3(0) de la fonction x 7→ sh(x)
ch(x) .

On sait que sh(x) =
x→0

x+ x3

6 +o
(
x3). On note que sh(x) =

x→0
x
Ä
1 + x2

6 + o
(
x2)ä donc un développement limité

à l’ordre 2 de 1
ch est suffisant et on a ch(x) =

x→0
1 + x2

2 + o
(
x2). Par conséquent

1
ch(x) =

x→0

1
1 + x2

2 + o (x2)
.

Posons u(x) =
x→0

x2

2 +o
(
x2) et on observe que u(x) −→

x→0
0. Or 1

1+u =
u→0

1−u+o (u) et o (u(x)) =
x→0

o
(
x2). Donc

1
ch(x) =

x→0

1
1 + u(x) =

x→0
1 − x2

2 + o
(
x2)+ o

(
x2) .

Dès lors,
sh(x)
ch(x) =

x→0

Ä
x + x3

6 + o
(
x3)ä Ä1 − x2

2 + o
(
x2)ä

=
x→0

x − x3

2 +o
(
x3)

+ x3

6 +o
(
x3)

+o
(
x3) .

Conclusion,
sh(x)
ch(x) =

x→0
x − x3

3 + o
(
x3) .

2. Donner un DL4(0) de la fonction 1
cos .

On sait que cos(x) =
x→0

1 − x2

2 + x4

24 + o
(
x4). Donc,

1
cos(x) =

x→0

1
1 − x2

2 + x4

24 + o (x4)

Posons u(x) =
x→0

− x2

2 + x4

24 + o
(
x4). Alors,

1
cos(x) =

x→0

1
1 + u(x) .

Or on observe que u(x) −→
x→0

0 et on sait que 1
1+u =

u→0
1 − u + u2 − u3 + u4 + o

(
u4).

• On a u(x) =
x→0

− x2

2 + x4

24 + o
(
x4) −→

x→0
0.

• De plus, u(x) ∼
x→0

− x2

2 donc par élévation à la puissance, u(x)2 ∼
x→0

x4

4 i.e.

u(x)2 =
x→0

x4

4 + o
(
x4) .

• D’autre part, u(x)3 ∼
x→0

− x6

8 =
x→0

o
(
x4) et donc u(x)4 =

x→0
o
(
x4) et o

(
u(x)4) =

x→0
o
(
x4).

Ainsi,

1
cos(x) =

x→0
1 − u(x) + u(x)2 − u(x)3 + u(x)4 + o

(
u(x)4)

=
x→0

1 + x2

2 − x4

24 + o
(
x4)+ x4

4 + o
(
x4)+ o

(
x4)+ o

(
x4)+ o

(
x4)

=
x→0

1 + x2

2 + 5x4

24 + o
(
x4) .

Exemple 32 : Factorisation par le terme prépondérant
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1. Donner un DL3(0) de f : x 7→ x2

1−cos(x) .

On sait que cos(x) =
x→0

1 − x2

2 + x4

24 + o
(
x4). Par conséquent,

f(x) = x2

1 − cos(x) =
x→0

x2

x2

2 − x4

24 + o (x4)
.

On factorise alors dans le dénominateur par le terme prépondérant qui est x2

2 pour faire apparaitre du 1
1+u ou

1
1−u :

f(x) =
x→0

x2

x2

2

Ä
1 − x2

12 + o (x2)
ä =

x→0
2 1

1 − x2

12 + o (x2)
.

On se rend compte que l’ordre initial n’est pas suffisant. Reprenons, on sait que l’on a également cos(x) =
x→0

1 − x2

2 + x4

24 + o
(
x5). Donc,

1 − cos(x) =
x→0

x2

2 − x4

24 + o
(
x5) =

x→0

x2

2

Å
1 − x2

12 + o
(
x3)ã .

D’où,
f(x) =

x→0
2 1

1 − x2

12 + o (x3)
.

Posons u(x) =
x→0

x2

12 + o
(
x3). Dès lors, on a f(x) =

x→0
2 1

1−u(x) avec, et c’est très important,

u(x) −→
x→0

0.

Or 1
1−u =

u→0
1 + u + u2 + u3 + o

(
u3). De plus,

• u(x) =
x→0

x2

12 + o
(
x3) −→

x→0
0.

• Puis,

u(x)2 =
x→0

Å
x2

12 + o
(
x3)ãÅx2

12 + o
(
x3)ã

=
x→0

o

Å
x4

144

ã
+ 2o

Å
x5

12

ã
+ o

(
x6)

=
x→0

o
(
x3) .

• De même,

u(x)3 =
x→0

u(x)2u(x) =
x→0

o
(
x3)Åx2

12 + o
(
x3)ã =

x→0
o
(
x3) .

• Enfin, o
(
u(x)3) =

x→0
o
(
x3).

On obtient donc

f(x) =
x→0

2
(
1 + u(x) + u(x)2 + u(x)3 + o

(
u(x)3)) =

x→0
2
Å

1 + x2

12 + o
(
x3)+ o

(
x3)+ o

(
x3)+ o

(
x3)ã .

Conclusion,

f(x) =
x→0

2 + x2

6 + o
(
x3) .

2. Donner un DL3(0) de g : x 7→ ln
(
1 + x +

√
1 + x

)
.

On sait que

√
1 + x =

x→0
1 + x

2 + (1/2)(−1/2)
2 x2 + (1/2)(−1/2)(−3/2)

6 + o
(
x2)

=
x→0

1 + x

2 − x2

8 + x3

16 + o
(
x3) .
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Donc

g(x) = ln
Ä
1 + x +

√
1 + x

ä
=

x→0
ln
Å

1 + x + 1 + x

2 − x2

8 + x3

16 + o
(
x3)ã =

x→0
ln
Å

2 + 3x

2 − x2

8 + x3

16 + o
(
x3)ã .

On factorise par le terme prépondérant qui est 2 ici :

g(x) =
x→0

ln
Å

2
Å

1 + 3x

4 − x2

16 + x3

32 + o
(
x3)ãã =

x→0
ln(2) + ln

Å
1 + 3x

4 − x2

16 + x3

32 + o
(
x3)ã .

Posons u(x) =
x→0

3x
4 − x2

16 + x3

32 + o
(
x3). On a alors,

g(x) =
x→0

ln(2) + ln (1 + u(x)) .

Or u(x) −→
x→0

0 et ln (1 + u) =
u→0

u − u2

2 + u3

3 + o
(
u3). Calculons,

• u(x) =
x→0

3x
4 − x2

16 + x3

32 + o
(
x3) −→

x→0
0

• De plus,
u(x)2 =

x→0

Ä
3x
4 − x2

16 + x3

32 + o
(
x3)ä Ä 3x

4 − x2

16 + x3

32 + o
(
x3)ä

=
x→0

9x2

16 − 3x3

64 +o
(
x3)

− 3x3

64 +o
(
x3)

+o
(
x3)

=
x→0

9x2

16 − 3x3

32 +o
(
x3)

• Puis
u(x)3 =

x→0

Ä
3x
4 − x2

16 + x3

32 + o
(
x3)ä Ä 9x2

16 − 3x3

32 + o
(
x3)ä

=
x→0

27x3

64 +o
(
x3)

+o
(
x3)

=
x→0

27x3

64 +o
(
x3) .

• Enfin, o
(
u(x)3) =

x→0
+o
(
x3).

Dès lors,
g(x) =

u→0
ln(2) + u(x) − u(x)2

2 + u(x)3

3 + o
(
u(x)3)

=
x→0

ln(2) 3x
4 − x2

16 + x3

32 +o
(
x3)

− 9x2

32 + 3x3

64 +o
(
x3)

+ 9x3

64 +o
(
x3)

+o
(
x3)

=
x→0

ln(2) + 3x
4 − 11x2

32 + 14x3

64 +o
(
x3) .

Conclusion,

g(x) =
x→0

ln(2) + 3x

4 − 11x2

32 + 7x3

32 + o
(
x3) .

3. Donner un DL3(0) de h : x 7→ e
arctan(x)

x .
On sait que arctan(x) =

x→0
x − x3

3 + o
(
x4). Donc,

arctan(x)
x

=
x→0

1 − x2

3 + o
(
x3) .

Ainsi,
h(x) = e

arctan(x)
x =

x→0
e1− x2

3 +o(x3) .
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Ici on utilise la propriété ea+b = ea eb pour faire apparaitre de eu avec u → 0 :

h(x) =
x→0

e1 e− x2
3 +o(x3) .

Posons u(x) =
x→0

− x2

3 + o
(
x3) −→

x→0
0. On a eu =

u→0
1 + u + u2

2 + u3

6 + o
(
u3).

• u(x) =
x→0

− x2

3 + o
(
x3) −→

x→0
0.

• De plus u(x) ∼
x→0

− x2

3 donc u(x)2 ∼
x→0

x4

9 =
x→0

o
(
x3).

• Par suite, u(x)3 =
x→0

o
(
x3) et o

(
u(x)3) =

x→0
o
(
x3).

D’où,

h(x) =
x→0

e1
Å

1 − x2

3 + o
(
x3)+ o

(
x3)+ o

(
x3)+ o

(
x3)ã =

x→0
e − e

3x2 + o
(
x3) .

4. Donner un DL3(0) de k : x 7→ 1
1+ex .

IV.3 Primitivation des développements limités

Soient n ∈ N et I un voisinage de 0. Soit f une fonction définie sur I telle que pour tout x ∈ I, f(x) =
x→0

o (xn). Si
F est une primitive de f sur I, alors

F (x) =
x→0

F (0) + o
(
xn+1) .

Lemme IV.4 (admis)

Soient n ∈ N, I un voisinage de 0, f une fonction définie sur I admettant un développement limité d’ordre n en 0 :

∀x ∈ I, f(x) =
x→0

n∑
k=0

akxk + o (xn) .

Soit F une primitive de f sur I. Alors F admet un développement limité d’ordre n + 1 en 0 qui est donné par

F (x) =
x→0

F (0) +
n∑

k=0

ak

k + 1xk+1 + o
(
xn+1) .

Théorème IV.5 (Primitivation des DL)

Démonstration. Soient n ∈ N, I un voisinage de 0, f ∈ F (I,K) et F une primitive de f sur I. On suppose qu’il
existe (ak)k∈J0;nK ∈ Rn+1 tel que

f(x) =
x→0

n∑
k=0

akxk + o (xn) .

Montrons que F admet un développement limité obtenu à partir de celui de f en intégrant terme à terme.
On pose pour tout x ∈ I,

g(x) = f(x) −
n∑

k=0
akxk.

On a alors g(x) =
x→0

o (xn). Posons également

∀x ∈ I, G(x) = F (x) −
n∑

k=0

ak

k + 1xk+1.

Alors, puisque F est une primitive, F est dérivable sur I. Il en va donc de même pour G en tant que différence de F
et d’un polynôme. De plus,

∀x ∈ I, G′(x) = F ′(x) −
n∑

k=0

Å
ak

k + 1xk+1
ã′

= f(x) −
n∑

k=0
akxk = g(x).
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Donc G est une primitive de g et g(x) =
x→0

o (xn). Ainsi par intégration du petit o, on en déduit que ∀x ∈ I,
G(x) =

x→0
G(0) + o

(
xn+1). Par suite, on obtient

F (x) = G(x) +
n∑

k=0

ak

k + 1xk+1 =
x→0

G(0) +
n∑

k=0

ak

k + 1xk+1 + o
(
xn+1) =

x→0
F (0) +

n∑
k=0

ak

k + 1xk+1 + o
(
xn+1) .

□

Exemple 33 :
1. Retrouver le développement limité en 0 à l’ordre n de x 7→ ln(1 + x).

On rappelle que l’on a établi dans l’exemple 12 le développement limité de x 7→ 1
1−x en 0. Soit n ∈ N. On a

1
1 − x

=
x→0

n∑
k=0

xk + o (xn) .

La fonction x 7→ 1
1−x est continue sur ]−∞; 1[ qui est un voisinage de 0. Donc admet des primitives sur ]−∞; 1[.

En particulier on sait que x 7→ − ln(1 − x) est une primitive de x 7→ 1
1−x sur ] − ∞; 1[. Donc d’après le théorème

IV.5, on en déduit que

− ln(1 − x) =
x→0

− ln(1 − 0)︸ ︷︷ ︸
=0

+
n∑

k=0

xk+1

k + 1 + o
(
xn+1)

⇔ ln(1 − x) =
x→0

−
n+1∑
k=1

xk

k
+ o

(
xn+1) par changement d’indice k̃ = k + 1

Ceci étant vrai pour tout n ∈ N, on en déduit que le développement de x 7→ ln(1 − x) à l’ordre n ∈ N∗ est

ln(1 − x) =
x→0

−
n∑

k=1

xk

k
+ o (xn) .

Naturellement quand x → 0, −x → 0, donc on a également

ln(1 + x) =
x→0

−
n∑

k=1

(−x)k

k
+ o ((−x)n) =

n∑
k=1

(−1)k+1

k
xk + o (xn) .

2. Retrouver le développement limité en 0 à l’ordre 2n + 1 de x 7→ arctan(x).
Soit n ∈ N, on sait que 1

1+u =
u→0

∑n
k=0 (−1)k

uk + o (un). Posons pour tout x ∈ R, u(x) = x2 et f(x) = 1
1+x2 .

On obtient alors,

f(x) =
x→0

n∑
k=0

(−1)k (
x2)k + o

Ä(
x2)n

ä
=

x→0

n∑
k=0

(−1)k
x2k + o

(
x2n
)

.

On sait que la fonction arctan est une primitive de f sur R. Donc par le théorème d’intégration des développe-
ments limités, on obtient bien

arctan(x) =
x→0

arctan(0) +
n∑

k=0

(−1)k
x2k+1

2k + 1 + o
(
x2n+1)

Exemple 34 :
1. Calculer le DL4(0) de ln (ch) puis en déduire à nouveau le DL3(0) de sh

ch obtenu à l’exemple 31.
On sait que ch(x) =

x→0
1 + x2

2 + x4

24 + o
(
x4). Donc

ln (ch(x)) =
x→0

ln
Å

1 + x2

2 + x4

24 + o
(
x4)ã .

Posons u(x) =
x→0

x2

2 + x4

24 + o
(
x4) −→

x→0
0. Or ln (1 + u) =

u→0
u − u2

2 o
(
u2).
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• u(x) =
x→0

x2

2 + x4

24 + o
(
x4) −→

x→0
0

• Par suite,

u(x)2 =
x→0

Å
x2

2 + x4

24 + o
(
x4)ãÅx2

2 + x4

24 + o
(
x4)ã =

x→0

x4

4 + o
(
x4) .

• Donc o
(
u(x)2) =

x→0
o
(
x4).

Ainsi,
ln (ch(x)) =

x→0
u(x) − u(x)2

2 + o
(
u(x)2)

=
x→0

x2

2 + x4

24 +o
(
x4)

− x4

8 +o
(
x4)

+o
(
x4) .

=
x→0

x2

2 − x4

12 +o
(
x4) .

Posons F = ln (ch). La fonction F est définie et même dérivable sur R. De plus f = F ′ = sh
ch .

• La fonction f est C 3 sur R donc admet notamment un développement limité à l’ordre 3 en 0, notons-le

f(x) =
x→0

a0 + a1x + a2x2 + a3x3 + o
(
x3) .

• F est une primitive de f sur R.
Donc par le théorème d’intégration des développements limités, F admet un développement limité à l’ordre 4
en 0 (on le savait déjà) et

F (x) =
x→0

F (0) + a0x + a1

2 x2 + a2

3 x3 + a3

4 x4 + o
(
x4) .

Or F (x) =
x→0

x2

2 − x4

12 + o
(
x4). Donc par unicité du développement limité

F (0) = ln (ch(0)) = ln(1) = 0 = 0 OK
a0 = 0
a1
2 = 1

2
a2
3 = 0

a3
4 = − 1

12

⇔


a0 = a3 = 0
a1 = 1
a3 = − 1

3

Ainsi,

f(x) =
x→0

x − x3

3 + o
(
x3) .

NB : le fait que a0 = a2 = 0 s’anticipait par le fait que f = sh
ch est une fonction impaire !

2. A l’aide de l’exemple 31 déterminer un DL3(0) de sin
cos2 .

Par l’exemple 31, on a 1
cos(x) =

x→0
1 + x2

2 + 5x4

24 + o
(
x4). Or la fonction F = 1

cos est dérivable sur
]
− π

2 ; π
2
[

et sa
dérivée est donnée par

F ′ = f = sin
cos2 .

La fonction f est C 3 sur
]
− π

2 ; π
2
[

donc possède un développement limité d’ordre 3 en 0, notons-le

f(x) =
x→0

a0 + a1x + a2x2 + a3x3 + o
(
x3) .

Puisque la fonction f est impaire, on en déduit que a0 = a2 = 0. Comme F est une primitive de f sur
]
− π

2 ; π
2
[
,

par le théorème d’intégration des développements limités,

F (x) =
x→0

F (0) + a1

2 x2 + a3

4 x4 + o
(
x4) .

Or
F (x) = 1

cos(x) =
x→0

1 + x2

2 + 5x4

24 + o
(
x4) .
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Donc par unicité des développements limités, on a
F (0) = 1

cos(0) = 1 = 1 OK
a1
2 = 1

2
a3
4 = 5

24

⇔


F (0) = 1

cos(0) = 1 = 1 OK
a1 = 1
a3 = 5

6

Conclusion,
f(x) = sin(x)

cos2(x) =
x→0

x + 5
6x3 + o

(
x3) .

IV.4 Formule de Taylor-Young

Soient I un intervalle, n ∈ N, f ∈ C n (I,R) et x0 ∈ I. Pour tout x ∈ I on a

f(x) =
x→x0

n∑
k=0

(x − x0)k

k! f (k)(x0) + o ((x − x0)n) .

Théorème IV.6 (Taylor-Young)

Remarque 35 :
• Les cas n = 0 et n = 1 correspondent à la Proposition III.6.
• La démonstration de ce théorème démontrera le point 3 de la Proposition III.6 que nous avions précédemment

admis qui nous dit que toute fonction de classe C n admet un DL d’ordre n.
• Par l’unicité d’un développement limité, si f(x) = a0 + a1(x − x0) + · · · + an(x − x0)n + o ((x − x0)n) et si f est

de classe C n au voisinage de x0 alors nécessairement pour tout k ∈ J0; nK, on a ak = f(k)(x0)
k! .

Démonstration. Soit I un voisinage de x0. Procédons par récurrence sur n et posons P(n) la propriété suivante :

P(n) : ∀f ∈ C n (I,R) , f(x) =
x→x0

n∑
k=0

(x − x0)k

k! f (k)(x0) + o ((x − x0)n) .

Initialisation. Si n = 0 ou même n = 1, cela correspond aux points 1 et 2 de la Proposition III.6 que nous avons déjà
démontrés.
Hérédité. Soit n ∈ N. Supposons P(n) vraie. Montrons que P(n + 1) est vraie. Soit f ∈ C n+1 (I,R). La fonction
g = f ′ existe sur I et g ∈ C n (I,R). Donc par hypothèse de récurrence, on a

g(x) =
x→x0

n∑
k=0

(x − x0)k

k! g(k)(x0) + o ((x − x0)n) .

Puisque la fonction f est une primitive de g sur I, on en déduit du théorème IV.6 (intégration des DL) que

f(x) =
x→x0

f (x0) +
n∑

k=0

(x − x0)k+1

k!(k + 1) g(k)(x0)︸ ︷︷ ︸
=f(k+1)(x0)

+o
(
(x − x0)n+1)

=
x→x0

f (x0) +
n∑

k=0

(x − x0)k+1

(k + 1)! f (k+1)(x0) + o
(
(x − x0)n+1)

=
x→x0

f (x0) +
n+1∑
k=1

(x − x0)k

k! fk(x0) + o
(
(x − x0)n+1)

=
x→x0

n+1∑
k=0

(x − x0)k

k! fk(x0) + o
(
(x − x0)n+1) ,

ce qui démontre que P(n + 1) est vraie.
Conclusion. Pour tout n ∈ N, P(n) est vraie et le théorème est démontré.

□
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IV.5 Applications

Exemple 36 : Rechercher un équivalent et/ou une limite.

Déterminer la limite suivante : lim
x→0
x̸=0

x(1 + cos(x)) − 2 tan(x)
x3 .

Exemple 37 : Etude d’une tangente.
1. Donner l’équation de la tangente au graphe de la fonction exp en 1.
2. Déterminer la position de la fonction f : x 7→ 1

1+ex par rapport à sa tangente en 0.

Exemple 38 : Etude d’une asymptote.

1. Etudier les branches infinies de la fonction f définie sur D =] − ∞, 0]∪]1, +∞[ par f(x) =
»

x3

x−1 .
2. Etudier les branches infinies de la fonction g définie sur R∗ par g(x) = x

1+e
1
x

.

Soient I un intervalle de R, a ∈ I un point un l’intérieur de I (a ̸= inf (I) et a ̸= sup (I)) et f une fonction ayant
un développement limité d’ordre 2 en a :

f(x) =
x→a

a0 + a1 (x − a) + a2 (x − a)2 + o
Ä
(x − a)2ä

.

1. (Condition nécessaire) Si f admet un extremum en a, alors a1 = 0.
2. (Condition suffisante)

• Si a1 = 0 et a2 > 0, alors f admet un minimum local en a.
• Si a1 = 0 et a2 < 0, alors f admet un maximum local en a.

Proposition IV.7

Démonstration.
1. Si f admet un développement limité à l’ordre 2 alors par troncature, f admet un développement limité à l’ordre

1 et donc par la proposition III.6, on en déduit que f est dérivable en a et que

f(x) =
x→a

f(a) + f ′(a) (x − a) .

Par unicité du développement limité, a1 = f ′(a). Or par la propoition V.7 du chapitre 2, pour que a soit un
extremum, il faut que a soit un point critique de f :

a1 = f ′(a) = 0.

2. Supposons que a1 = 0 et que a2 > 0. Alors dans ce cas (l’hypothèse a2 ̸= 0 est fondamentale),

f(x) − a0 ∼
x→a

a2 (x − a)2
.

Or deux équivalents ont le même signe au voisinage du point considéré, donc il existe J un voisinage de a tel
que

∀x ∈ J, f(x) − a0 ⩾ 0 i.e. f(x) ⩾ a0.

Or puisque f admet un développement à l’ordre 0 en a, on a a0 = f(a) (vrai uniquement pour l’ordre 0 et 1)
et donc

∀x ∈ J, f(x) ⩾ f(a).

Conclusion, dans ce cas, a est bien un minimum local. On traite le cas a2 < 0 de la même façon.
□

Remarque 39 : En particulier, si f est C 2, par la formule de Taylor-Young, f(x) =
x→a

f(a) + f ′(a) (x − a) +
f ′′(a)

2 (x − a)2 +o
Ä
(x − a)2ä. Donc pour la recherche d’extrema, on retrouve bien la démarche suivante : on commence

par chercher les points critiques avec la dérivée première puis on peut chercher à savoir si c’est un extremum local ou
non à l’aide du signe de la dérivée seconde en a.
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V Complément sur la domination

Soient (un)n∈N, (vn)n∈N deux suites à valeurs dans K, a ∈ R, I un voisinage de a et f et g deux éléments de
F (I,K).

• Fonctions : on dit que f est dominée par g en a, noté f(x) =
x→a

O (g(x)) (f est un grand o de g en a) si et
seulement si

la fonction f

g
est bornée au voisinage de a.

• Suites : on dit que (un)n∈N est dominée par (vn)n∈N noté un =
n→+∞

O(vn) (un est un grand o de vn) si et
seulement si

la suite
Å

un

vn

ã
n∈N

est bornée.

Définition V.1

1. Suites : si un =
n→+∞

o(vn) alors un =
n→+∞

O(vn).

2. Fonctions : si f(x) =
x→a

o (g(x)) alors f(x) =
x→a

O (g(x)).

3. Suites : si un ∼
n→+∞

vn alors un =
n→+∞

O(vn).

4. Fonctions : si f(x) ∼
x→a

g(x) alors f(x) =
x→a

O (g(x)).

5. Suites : un =
n→+∞

O(1) si et seulement si la suite (un)n∈N est bornée.

6. Fonctions : f(x) =
x→a

O (1) si et seulement si la fonction f est bornée sur un voisinage de a.

Proposition V.2

1. (Transitivité) Si un =
n→+∞

O(vn) et vn =
n→+∞

O(wn), alors un =
n→+∞

O(wn).

2. (Somme) Si un =
n→+∞

O(wn) et vn =
n→+∞

O(wn) alors un + vn =
n→+∞

O(wn). Autrement dit

O (wn) + O (wn) =
n→+∞

O (wn) .

3. (Produit) Si un =
n→+∞

O(wn) et vn =
n→+∞

O(tn) alors unvn =
n→+∞

O(wntn). Autrement dit

O (wn) O (tn) =
n→+∞

O (wntn) .

4. (Absorption) Si un =
n→+∞

O(vn) alors pour tout λ ̸= 0, λ un =
n→+∞

O (vn) et un =
n→+∞

O (λ vn). Autrement
dit

λ O (vn) =
n→+∞

O (λ vn) =
n→+∞

O (vn) .

Proposition V.3

Exemple 40 :
• sin(n)n2 =

n→+∞
O
(
n2) .

• cos(x) =
x→0

1 − x2

2 + O
(
x4) .
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HARDY Godfrey (Cranleigh (Angleterre) 1877 - Cambridge 1947) entra au Trinity
College de Cambridge en 1896 où il se tourna vers les mathématiques en découvrant le
« Cours d’analyse » de Jordan. Il y enseigna à partir de 1906 avant d’obtenir un poste à
Oxford en 1919. Après un court séjour à Princeton, il revint à Cambridge et y demeurera
jusqu’à sa retraite en 1942. Les mathématiques de Hardy étaient toujours orientées vers
la théorie des nombres mais pour parvenir à ses fins, il établit d’importants résultats
en analyse. Il découvrit, indépendamment du physicien Weinberg, la loi portant leurs
deux noms décrivant l’équilibre génétique au sein d’une population. Son résultat le plus
célèbre fut de démontrer que la fonction ζ de Riemann admet une infinité de zéros
de partie réelle 1/2. Il travailla avec Littlewood avec qui il établit une méthode pour
décrire le comportement asymptotique d’une suite particulière d’entiers. Il échangea
avec le mathématicien Ramanujan, grand prodige autodidacte indien qu’Hardy fit venir
en Angleterre.
Hardy contribua à rendre les mathématiques britanniques plus rigoureuses et grâce à son rayonnement unique fut l’un
des représentants majeurs des mathématiques anglaises du XXième siècle.
Hardy introduit la notation ≼ pour signifier la négligeabilité. Notation qu’il abandonnera rapidement pour la notation
de Landau o. La notation ≪ est due à Vinogadrov en 1930.
Lors d’un cours au Trinity Collège, Hardy énonce un résultat et affirme : « La démonstration est évidente ! » Mais
son assurance se transforme en doute, il se gratte la tête et dit : « Au fait, est-ce évident ? ». Il se met à tourner en
répétant « Est-ce évident ? » Il sort alors de la salle et revient quelques minutes plus tard en affirmant « Oui, c’était
évident ! ».
Profondément athée, Hardy était férocement opposé à la religion et à l’idée de Dieu. Paradoxalement, cette posture l’a
poussé à donner corps au personnage dont il voulait nier l’existence. Il s’amusait donc à venir au match de cricket
avec un parapluie et une liasse de papiers pour faire croire à Dieu qu’il souhaitait l’annulation du match pour travailler
ses mathématiques. En tant que pire ennemi de Hardy, Dieu lui refuserait cette joie et lui enverrait donc du soleil...
Dans ce même esprit, une anecdote désormais célèbre, raconte qu’avant d’effectuer une traversée par gros temps du
Danemark à l’Angleterre, Hardy envoya une carte postale à Bohr en lui écrivant : « Ai preuve de l’hypothèse de
Riemann. Carte trop petite pour démonstration. » Hardy savait ainsi que Dieu épargnerait son navire afin de ne
pas lui donner l’immense gloire de faire croire à la communauté mathématique qu’il avait démontré l’hypothèse de
Riemann.

Comme à son habitude, le professeur a donné un très (trop ?) long devoir maison à faire : une montagne de dévelop-
pements limités à faire. Manque de chance, cela tombe pendant les vacances : Noël, le nouvel an, le ski, la conjecture
actuelle, tout ça... Bref l’étudiant se retrouve en peine de finir tous les calculs la veille (naturellement...) de la date
limite. Il introduit donc proprement les notations, donne les développements limités usuels qui permettent de démarrer,
précise à l’aide de la factorisation à quel ordre il faut pousser le calcul, rédige les cinq premières lignes et anticipe la
suite du calcul en ne justifiant que les points essentiels et difficiles que devront présenter la démonstration. Il laisse
malheureusement sa démonstration inachevée mais écrit sur sa copie « La preuve est laissée en exercice. Le correcteur
vérifiera aisément par le calcul que le reste du raisonnement est trivial. » La semaine suivante (ou trois semaines
plus tard...) il reçoit son devoir corrigé. Il remarque alors que six pages annexes ont été agrafées à l’arrière de sa
copie. Il examine ces pages et découvre alors avec surprise la preuve complète décrite étape par étape. Tout à la fin,
le correcteur a écrit au rouge : « J’ai fait une petite erreur sans importance. Moins 5. »
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