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Chapitre XIV : Limite, continuité,
dérivation

I Limite
I.1 Définition
On rappelle que R désigne R auquel on adjoint +∞ et −∞.

Soit I un intervalle de R d’intérieur non vide (contenant au moins deux points distincts de R). On dit que I est
un voisinage de a ∈ R si a ∈ I ou si a = sup(I) ou si a = inf(I).

Définition I.1

Exemple 1 :
• Si a = +∞, les voisinages de +∞ sont les intervalles [A; +∞[ ou ]A; +∞[, avec A ∈ R.
• Pour tout η > 0, l’intervalle [a − η; a + η] est un voisinage de a.

Soient I un intervalle et f : I → R. Soient a ∈ R tel que I soit un voisinage de a et l ∈ R. On dit que f tend vers l
lorsque x tend vers a, noté

lim
x→a

f(x) = l,

si et seulement si pour tout ε > 0, il existe η > 0 tel que pour tout x ∈ I,

|x − a| ⩽ η ⇒ |f(x) − l| ⩽ ε .

Définition I.2

Soient I un intervalle et f : I → R. Soient a ∈ R tel que I soit un voisinage de a et l ∈ R. On définit également
lim
x→a

f(x) = l dans les cas suivants.

• Si a = +∞ et l ∈ R. ∀ ε > 0, ∃A ∈ R, ∀x ∈ I, x ⩾ A ⇒ |f(x) − l| ⩽ ε.
• Si a ∈ R et l = +∞. ∀M ∈ R, ∃η > 0, ∀x ∈ I, |x − a| ⩽ η ⇒ f(x) ⩾ M .
• Si a = −∞ et l ∈ R. ∀ ε > 0, ∃A ∈ R, ∀x ∈ I, x ⩽ A ⇒ |f(x) − l| ⩽ ε.
• Si a ∈ R et l = −∞. ∀M ∈ R, ∃η > 0, ∀x ∈ I, |x − a| ⩽ η ⇒ f(x) ⩽ M .
• Si a = +∞ et l = +∞. ∀M ∈ R, ∃A ∈ R, ∀x ∈ I, x ⩾ A ⇒ f(x) ⩾ M .
• Si a = +∞ et l = −∞. ∀M ∈ R, ∃A ∈ R, ∀x ∈ I, x ⩾ A ⇒ f(x) ⩽ M .
• Si a = −∞ et l = +∞. ∀M ∈ R, ∃A ∈ R, ∀x ∈ I, x ⩽ A ⇒ f(x) ⩾ M .
• Si a = −∞ et l = −∞. ∀M ∈ R, ∃A ∈ R, ∀x ∈ I, x ⩽ A ⇒ f(x) ⩽ M .

Définition I.3

Remarque 2 :
• Il est possible dans chacune des assertions de remplacer une inégalité large ou les deux par une inégalité stricte.
• On peut résumer ces définitions à l’aide d’une seule : pour tout voisinage Vl de l ∈ R, il existe un voisinage Va

de a ∈ R tel que pour tout x ∈ Va, on a f(x) ∈ Vl.
Interprétation : quitte à prendre x suffisamment proche de a, il est possible d’avoir f(x) aussi proche que voulu de
l. Cf dessins faits en classe.

Soient a ∈ R, I un voisinage de a, f : I → R. Si f admet une limite en a alors cette limite est unique.

Théorème I.4 (Unicité de la limite)

Démonstration. Soient l, l′ ∈ R tels que lim
x→a

f(x) = l et lim
x→a

f(x) = l′. On va démontrer que l = l′. Traitons le cas
où l, l′ et a sont réels. Les cas où l, l′ ou a sont infinis se démontrent de façon analogue. On peut aussi traiter tous
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les cas en même temps en utilisant la notion de voisinage. Procédons par l’absurde et supposons que l ̸= l′. Premier
cas l′ < l. Posons ε = l−l′

3 . On a donc ε > 0. Donc par définition de la limite, il existe η1 > 0 tel que pour tout x ∈ I,

|x − a| ⩽ η1 ⇒ |f(x) − l| ⩽ ε .

En particulier pour tout x ∈ [a − η1; x + η1] ∩ I, f(x) ⩾ l − ε = l − l−l′

3 . D’autre part, il existe η2 > 0 tel que pour
tout x ∈ I,

|x − a| ⩽ η1 ⇒ |f(x) − l′| ⩽ ε .

En particulier pour tout x ∈ [a−η2; x+η2]∩I, f(x) ⩽ l′ +ε = l′ + l−l′

3 . On pose η = min(η1, η2). Si x ∈ [a−η; x+η]∩I
alors x ∈ [a − η1; x + η1] ∩ I et x ∈ [a − η2; x + η2] ∩ I. Par conséquent, on en déduit que®

f(x) ⩾ l − l−l′

3 = 2l+l′

3 = l
3 + l+l′

3
f(x) ⩽ l′ + l−l′

3 = l+2l′

3 = l′

3 + l+l′

3 .

Donc on remarque que f(x) ⩽ l′

3 + l+l′

3 < l
3 + l+l′

3 ⩽ f(x) en particulier f(x) < f(x) ce qui est absurde. On démontre
de la même façon que l < l′ est aussi absurde et que donc l ̸= l′ est absurde. Par conséquent l = l′.

□

Exemple 3 :
• Démontrer que la fonction f : x 7→ x2 admet 0 comme limite en 0.
• Montrer que la fonction partie entière n’a pas de limite en 1.

Soient a ∈ R, I un voisinage de a et f : I → R.
1. Si a ̸= +∞, on appelle limite à droite de f en a la limite de la restriction f |I∩]a;+∞[ en a, notée

lim
x→a
x>a

f(x) ou parfois lim
x→a+

f(x).

2. Si a ̸= −∞, on appelle limite à gauche de f en a la limite de la restriction f |I∩]−∞;a[ en a, notée
lim
x→a
x<a

f(x) ou parfois lim
x→a−

f(x).

Définition I.5

Exemple 4 : Montrer que la fonction f : x 7→ 1
x admet une limite à droite et une limite à gauche dans R en 0.

Soient I un intervalle de R, a un élément intérieur de I i.e. a ∈ I mais a n’est pas une borne de I. Soit f : I → R.
Alors

lim
x→a

f(x) existe ⇔



lim
x→a
x>a

f(x) existe

lim
x→a
x<a

f(x) existe

lim
x→a
x>a

f(x) = lim
x→a
x<a

f(x) = f(a).

Proposition I.6

Exemple 5 :
1. La fonction partie entière à des limites à droite et à gauche distinctes pour tout a ∈ Z et n’admet donc pas de

limite en ces points.
2. La fonction x 7→ sin(x)

x n’est pas définie en 0 mais admet une limite en 0 :

lim
x→0
x ̸=0

f(x) = 1.

3. La fonction sinus cardinal g : x 7→
® sin(x)

x si x ̸= 0
1 si x = 0

admet une limite en 0.

lim
x→0

g(x) = 1.

4. La fonction x 7→
® sin(x)

x si x ̸= 0
0 si x = 0

admet une limite à droite et une limite à gauche en 0 mais n’admet pas de

limite en 0.
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I.2 Propriétés élémentaires sur les limites

Soient a ∈ R, I un voisinage de a, f et g deux fonctions définies sur I et (l, l′) ∈
(
R
)2. Si

lim
x→a

f(x) = l et lim
x→a

g(x) = l′,

alors

1. lim
x→a

f(x) + g(x) = l + l′, si l + l′ existe dans R, 2. ∀ λ ∈ R, lim
x→a

λ f(x) = λ l, si λ l existe dans R,

3. lim
x→a

|f(x)| = |l|, 4. lim
x→a

f(x)g(x) = ll′, si ll′ existe dans R,

5. si l ̸= 0, lim
x→a

1
f(x) = 1

l
, 6. si l′ ̸= 0, lim

x→a

f(x)
g(x) = l

l′ , si l
l′ existe dans R

Proposition I.7 (Opérations algébriques)

On rappelle ci-dessous, les différents cas de figures pour la somme et le produit de limites.

+ −∞ y ∈ R +∞

−∞ −∞ −∞ ?

x ∈ R −∞ x + y +∞

+∞ ? +∞ +∞

× −∞ y ∈ R∗
− 0 y ∈ R+∗ +∞

−∞ +∞ +∞ ? −∞ −∞

x ∈ R∗
− +∞ xy 0 xy −∞

0 ? 0 0 0 ?

x ∈ R∗
+ −∞ xy 0 xy +∞

+∞ −∞ −∞ ? +∞ +∞

Soient a, b ∈ R, I un voisinage de a, J un voisinage de b, f : J → R, g : I → R. Si

lim
x→b

f(x) = l et lim
x→a

g(x) = b,

alors f ◦ g est bien définie sur un voisinage de a et

lim
x→a

f ◦ g(x) = l.

Proposition I.8 (composition)

Exemple 6 : On a limx→+∞
1
x = 0 et limu→0 eu = 1, par conséquent

lim
x→+∞

e 1
x = lim

u→0
eu = 1.

• L’assertion suivante est FAUSSE !

lim
x→a

g(x) = l′ ⇒ lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + l′,

car il se peut que d’une part que limx→a f(x) + l′ n’existe pas dans R alors
que limx→a (f(x) + g(x)) existe ou que limx→a f(x) n’existe pas dans R alors que
limx→a (f(x) + g(x)) existe.

• De même pour le produit ou le quotient.
• De façon générale, il est interdit de remplacer dans l’expression d’une fonction un seul

terme par sa limite.

Anti-Proposition I.9
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Exemple 7 :
• Si f : x 7→ x et g : x 7→ −x alors lim

x→+∞
(f(x) + g(x)) = 0 existe alors que lim

x→+∞
f(x) − ∞ n’existe pas dans R.

• Si f : x 7→ sin(x) et g : x 7→ x alors lim
x→+∞

(f(x) + g(x)) = +∞ existe dans R alors que lim
x→+∞

f(x) n’existe pas

dans R.
• Si f : x 7→ ex −(1+2x)

x . Même si lim
x→0

1 + 2x = 1, on a

lim
x→0
x ̸=0

f(x) ̸= lim
x→0
x ̸=0

ex −1
x

.

En effet, puisque ex =
x→0

1 + x + o(x),

f(x) =
x→0

1 + x + o(x) − 1 − 2x

x
=

x→0
−1 + o(1) →

x→0
−1 ̸= 1 = lim

x→0
x ̸=0

ex −1
x

.

Soient a ∈ R, I un voisinage de a, f et g : I → R. On suppose que f et g admettent des limites en a. On a les
implications suivantes

∀x ∈ I, f(x) ⩽ g(x) ⇒ lim
x→a

f(x) ⩽ lim
x→a

g(x)

∀x ∈ I, f(x) < g(x) ⇒ lim
x→a

f(x) ⩽ lim
x→a

g(x).

Proposition I.10

Démonstration. On suppose par exemple a = +∞ et l = limx→a f(x) ∈ R et l′ = limx→a g(x) ∈ R. On suppose
que pour tout x ∈ I, f(x) ⩽ g(x). Montrons que l ⩽ l′. Procédons par l’absurde et supposons que l > l′ et posons
ε = l−l′

3 . Par définition des limites, il existe A ∈ R et B ∈ R telles que

∀x ∈ [A; +∞[∩I, f(x) ∈ [l − ε; l + ε]
∀x ∈ [B; +∞[∩I, g(x) ∈ [l′ − ε; l′ + ε]

Donc avec C = max(A, B), on obtient que pour tout x ∈ [C; +∞[∩I = [A; +∞[∩[B; +∞[∩I,

f(x) ⩾ l − ε = l − l − l′

3 = 2l + l′

3

g(x) ⩽ l′ + ε = l′ + l − l′

3 = l + 2l′

3

Or 2l+l′

3 = l
3 + l+l′

3 > l′

3 + l+l′

3 = l+2l′

3 car on a supposé l > l′. Par conséquent pour tout x ∈ [a − η; a + η] ∩ I,

g(x) ⩽ l + 2l′

3 <
2l + l′

3 ⩽ f(x),

ce qui contredit l’hypothèse que pour tout x ∈ I, f(x) ⩽ g(x). On a donc montré que l ⩽ l′.
□

Soient a ∈ R, I un voisinage de a et f : I → R.
Si la limite de f en a existe dans R alors f est bornée sur un voisinage de a.

Proposition I.11

Démonstration. Traitons le cas a ∈ R. Posons l = lim
x→a

f(x) ∈ R. Par définition de la limite, pour tout ε > 0, il
existe η > 0 tel que

∀x ∈ [a − η; a + η] ∩ I, f(x) ∈ [l − ε; l + ε].
Notamment pour ε = 1 par exemple, il existe η > 0 tel que pour tout x ∈ [a − η; a + η] ∩ I,

l − 1 ⩽ f(x) ⩽ l + 1.

Donc la fonction f est bien bornée sur J = [a − η; a + η] ∩ I qui est bien un voisinage de a.
□
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I.3 Théorèmes d’existence de limites

Soient a ∈ R, I un voisinage de a, f , g et h trois fonctions I → R.
1. Encadrement. On suppose que pour tout x ∈ I, g(x) ⩽ f(x) ⩽ h(x). On suppose de plus que g et h

admettent une limite commune dans R : lim
x→a

g(x) = lim
x→a

h(x) = l ∈ R. Alors f admet une limite en a et de
plus

lim
x→a

f(x) = l.

2. Majoration. On suppose que pour tout x ∈ I, f(x) ⩽ g(x) et que g diverge vers −∞ en a : lim
x→a

g(x) = −∞.
Alors f admet une limite a qui est −∞ :

lim
x→a

f(x) = −∞.

3. Minoration. On suppose que pour tout x ∈ I, g(x) ⩽ f(x) et que g diverge vers +∞ en a : lim
x→a

g(x) = +∞.
Alors f admet une limite a qui est +∞ :

lim
x→a

f(x) = +∞.

Théorème I.12 (comparaison)

Démonstration. Démontrons le premier point et supposons par exemple a = −∞. On suppose que pour tout x ∈ I,
g(x) ⩽ f(x) ⩽ h(x) et que lim

x→a
g(x) = lim

x→a
h(x) = l ∈ R. Donc par définition, pour tout ε > 0, il existe A ∈ R et

B ∈ R tels que
∀x ∈] − ∞; A[∩I, g(x) ∈ [l − ε; l + ε],
∀x ∈] − ∞; B[∩I, h(x) ∈ [l − ε; l + ε].

En particulier, en posant C = min(A, B), on a pour tout x ∈] − ∞; C[∩I =] − ∞; A[∩] − ∞; B[∩I,
g(x) ⩾ l − ε et h(x) ⩽ l + ε .

Par conséquent, pour tout x ∈] − ∞; C[∩I,
l − ε ⩽ g(x) ⩽ f(x) ⩽ h(x) ⩽ l + ε .

On a donc montré que pour tout ε > 0, il existe C ∈ R tel que pour tout x ∈] − ∞; C[∩I, f(x) ∈ [l − ε; l + ε] ce qui
signifie que f admet une limite en a et lim

x→a
f(x) = l.

□

Soient a ∈ R, I un voisinage de a et f et g deux fonctions I → R telles que pour tout x ∈ I, |f(x)| ⩽ g(x). Alors

lim
x→a

g(x) = 0 ⇒ lim
x→a

f(x) = 0.

Corollaire I.13

Soient I un intervalle de R, a = inf(I), b = sup(I) (i.e. I = ]a; b[ ou I = [a; b[ ou I = ]a; b] ou I = [a; b]) et f :
I → R. On suppose que f est croissante sur I. Alors f admet une limite (éventuellement infinie) à droite en a et
une limite à gauche en b et de plus

lim
x→a
x>a

f(x) = inf
x∈I

f(x) et lim
x→b
x<b

f(x) = sup
x∈I

f(x).

Plus précisément
1. Si f est majorée sur I alors sa limite à gauche en b est finie, lim

x→b
x<b

f(x) ∈ R.

2. Si f n’est pas majorée sur I alors sa limite à gauche en b est +∞, lim
x→b
x<b

f(x) = +∞.

3. Si f est minorée sur I alors sa limite à droite en a est finie, lim
x→a
x>a

f(x) ∈ R.

4. Si f n’est pas minorée sur I alors sa limite à droite en a est −∞, lim
x→a
x>a

f(x) = −∞.

Théorème I.14 (Limite monotone)
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Démonstration. Démontrons le premier point. L’ensemble A = {f(x) | x ∈ I } = f(I) est par hypothèse majoré. Il
est de plus non vide car f est bien définie sur I. Donc on sait que supx∈I f(x) existe dans R. Notons-la l = supx∈I f(x).
Par la caractérisation de la borne supérieure, pour tout ε > 0, il existe y ∈ A tel que l − ε ⩽ y. Par définition de
A, il existe x0 ∈ I tel que y = f(x0). Donc l − ε ⩽ f(x0). Or la fonction f est croissante sur I donc pour tout
x ∈ [x0; b[⊆ I (inclusion découlant du fait que I est un intervalle) on a f(x) ⩾ f(x0) ⩾ l − ε. Donc pour tout ε > 0,
il existe η = b − x0 > 0 tel que pour tout x ∈]b − η; b[, on a f(x) ⩾ l − ε. Or par définition de l = supx∈I f(x) on sait
également que f(x) ⩽ l. Par suite, pour tout x ∈]b − η; b[,

f(x) ∈ [l − ε; l] ⊆ [l − ε; l + ε].

Ceci démontre bien que la limite à gauche de f en b existe et vaut l = supx∈I f(x).
□

Soient a ∈ R, I un voisinage de a et f : I → R. Les assertions suivantes sont équivalentes.
1. La fonction f admet une limite l ∈ R en a.
2. Pour tout suite (un)n∈N à valeurs dans I, si (un)n∈N tend vers a quand n tend vers +∞ alors la suite

(f (un))n∈N tend vers l quand n tend vers +∞.

Théorème I.15 (Caractérisation séquentielle de la limite)

Remarque 8 :
• Ce théorème est très utile pour relier les résultats sur les fonctions et les résultats sur les suites.
• Il est également très utile en pratique pour démontrer qu’une fonction n’admet pas de limite.

Exemple 9 : Démontrer que la fonction x 7→ sin
( 1

x

)
n’admet pas de limite en 0.

II Continuité
Soit I un intervalle. On note I̊ l’intérieur de I c’est-à-dire l’ensemble I \ {inf(I); sup(I)}. Par exemple si I =]3; 18]
alors I̊ =]3; 18[.

II.1 Définition

Soient I un intervalle de R et f : I → R.
• On dit que f est continue en a ∈ I̊ si f admet une limite finie en a : lim

x→a
f(x) = f(a) i.e.

∀ ε > 0, ∃η > 0, (|x − a| ⩽ η) ⇒ (|f(x) − f(a)| ⩽ ε) .

• On dit que f est continue sur I si f est continue en tout point a de I. On note alors C (I,R) ou C (I)
l’ensemble des fonctions continues sur I.

Définition II.1

Remarque 10 : Si f est continue en a, nécessairement f est définie en a et donc sa limite quand x tend vers a vaut
f(a).

Soient I un intervalle de R, f : I → R et a ∈ I̊.
• On dit que f est continue à droite en a si f admet une limite à droite en a qui coïncide avec f(a) :

lim
x→a
x>a

f(x) existe et lim
x→a
x>a

f(x) = f(a).

• On dit que f est continue à gauche en a si f admet une limite à gauche en a qui coïncide avec f(a) :

lim
x→a
x<a

f(x) existe et lim
x→a
x<a

f(x) = f(a).

Définition II.2

Exemple 11 :
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1. Pour a ∈ Z, la fonction partie entière est continue à droite en a mais n’est pas continue à gauche en a.
2. On définit f de la façon suivante :

∀x ∈ R, f(x) =


e− 1

x si x > 0
0 si x = 0
e 1

x si x < 0

Montrer que f est continue en 0.

Soient I un intervalle de R, a ∈ I̊ et f : I → R.
La fonction f est continue en a si et seulement si f est continue à droite en a et est continue à gauche en a.

Proposition II.3

La somme, le produit, le quotient (lorsque le dénominateur ne s’annule pas) et la composition (de fonctions définies
sur des intervalles adaptés) de fonctions continues en un point a respectivement sur un intervalle I est une fonction
continue en a respectivement sur I.

Proposition II.4 (Rappel)

Remarque 12 : Puisque l’ensemble C (I,R) est stable par combinaison linéaire, C (I,R) est un espace vectoriel (et
même un sous-espace vectoriel de F (I,R)).

Soient I un intervalle de R, a ∈ I, f : I → R. Les assertions suivantes sont équivalentes :
1. La fonction f est continue en a.
2. Pour toute suite (un)n∈N à valeurs dans I.

Si (un)n∈N converge vers a alors la suite (f (un))n∈N converge vers f(a).

Proposition II.5 (Caractérisation séquentielle de la continuité)

Remarque 13 : Lorsque un −→
n→+∞

l, pour affirmer que f (un) −→
n→+∞

f (l) il faut justifier que f est continue en l (ou
sur un intervalle contenant l).
Exemple 14 : Montrer que la fonction 1Q n’est continue en aucun point de R !

Soient I un intervalle de R, a ∈ I et f : I \{a} → R. On dit que f est prolongeable par continuité en a si limx→a
x ̸=a

f(x)
existe. On définit alors

∀x ∈ I, f̃(x) =

f(x) si x ̸= a

lim
x→a
x ̸=a

f(x) si x = a

La fonction f̃ ainsi définie est alors continue en a.

Définition II.6

Remarque 15 : En pratique on note encore f le prolongement par continuité de f .
Exemple 16 :

• La fonction f : x 7→ arctan(x)
x définie sur R∗ est prolongeable par continuité en 0.

• La fonction g : x 7→ e− 1
x définie sur R∗

+ est prolongeable par continuité en 0.
• La fonction h : x 7→ e− 1

x définie sur R∗ n’est pas prolongeable par continuité en 0.
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II.2 Image d’un intervalle et d’un segment par une fonction continue
Algorithme de dichotomie.
Soit a < b deux réels et f : [a; b] → R, continue sur [a; b]. On suppose que f(a) < 0 < f(b) et on cherche c ∈ [a; b] tel
que f(c) = 0.
On construit l’algorithme suivant dans Python :

Démontrons que cet algorithme retourne une valeur appro-
chée de c. Soient (an)n∈N et (bn)n∈N définie par récurrence
par a0 = a, b0 = b puis par récurrence par

• an+1 = an+bn

2 et bn+1 = bn si f
(

an+bn

2
)

< 0,
• an+1 = bn+1 = an+bn

2 si f
(

an+bn

2
)

= 0,
• an+1 = an et bn+1 = an+bn

2 si f
(

an+bn

2
)

> 0.
On démontre aisément par récurrence que pour tout n ∈ N,

a ⩽ an ⩽ an+1 ⩽ bn+1 ⩽ bn ⩽ b.

En particulier on vérifie dans le même temps que pour tout
n ∈ N, an+bn

2 ∈ [a; b] et que donc les suites sont bien définies.

Par conséquent, la suite (an)n∈N est croissante et majorée par b donc converge vers un réel l ∈ [a; b]. De même, la suite
(bn)n∈N est décroissante et minorée par a donc converge vers un réel l′ ∈ [a; b]. De plus, on peut également démontrer
par récurrence que

∀n ∈ N, 0 ⩽ bn − an ⩽
b − a

2n
.

Donc par passage à la limite, on en déduit que l = l′. Notons c ce réel.
NB : nous verrons dans le prochain chapitre que les suites (an)n∈N et (bn)n∈N sont dites adjacentes et par un résultat
général, convergent vers une limite commune.
Notez que par monotonie des suites (an)n∈N et (bn)n∈N, on a c ∈ [a; b]. Or la fonction f est continue sur [a; b] donc
en c. Donc par la caractérisation séquentielle de la continuité on a

lim
n→+∞

an = c ⇒ lim
n→+∞

f(an) = f(c)

lim
n→+∞

bn = c ⇒ lim
n→+∞

f(bn) = f(c).

Or par construction, pour tout n ∈ N, f (an) ⩽ 0 et f (bn) ⩾ 0. Donc par passages à la limite, il vient que f(c) ⩾ 0
et f(c) ⩽ 0 i.e. f(c) = 0. Nous avons donc démontré le résultat suivant :

Soient a < b deux réels et f ∈ C ([a; b],R) telle que f(a) < 0 < f(b). Alors il existe c ∈ [a; b] tel que f(c) = 0.
Lemme II.7

Remarque 17 : On a le même résultat si f(a) > 0 > f(b), il suffit de considérer g = −f pour se ramener au cas
précédent.
Exercice 18 : Modifier le programme Python précédent en remplaçant le paramètre N par un réel p qui correspond
à la précision du résultat souhaité i.e. tel que le programme retourne une valeur de c telle que |c − ctheorique| ⩽ p. On
pourra s’aider de l’inégalité bn − an ⩽ b−a

2n que l’on pourra démontrer.

Soient a < b deux réels de R et f : [a; b] → R continue sur [a; b]. Alors pour tout y ∈ [f(a); f(b)] (ou [f(b); f(a)] si
f(a) > f(b)) il existe c ∈ [a; b] tel que y = f(c) :

∀y ∈ [f(a); f(b)] , ∃c ∈ [a; b], y = f(c).

Théorème II.8 (Théorème des valeurs intermédiaires)

Démonstration. Appliquer le lemme précédent pour la fonction g = f − y.
□

Remarque 19 : Si y ∈ ]f(a); f(b)[ alors c ∈]a; b[.
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L’image d’un intervalle par une fonction continue est un intervalle.
Corollaire II.9

Démonstration. Soit I un intervalle de R, c’est-à-dire pour tout (a, b) ∈ I2, [a; b] ⊆ I. Soit f une fonction continue
sur I. Montrons que J = f(I) est un intervalle de R. Soit (α, β) ∈ J2. Par définition de J = f(I), il existe a ∈ I et
b ∈ I tels que α = f(a) et β = f(b). Montrons que [α; β] ⊆ J . Soit γ ∈ [α; β] = [f(a); f(b)]. Par le théorème des valeurs
intermédiaires, il existe c ∈ [a; b] tel que γ = f(c) et puisque que c ∈ [a; b] ⊆ I, on en déduit que γ = f(c) ∈ f(I) = J .
On a donc montré que [α; β] ⊆ J et ce pour tout (α, β) ∈ J2. Par conséquent, J est aussi un intervalle de R.

□

Soient I un intervalle de R et f : I → R une fonction continue sur I et strictement monotone sur I. Alors
1. la fonction f est une bijection de I dans J = f (I), en particulier, ∀y ∈ J , ∃!x ∈ I tel que y = f(x),
2. sa réciproque f−1 est continue sur J = f(I)
3. sa réciproque f−1 est strictement monotone sur J , de même monotonie que f

4. l’intervalle J est de même nature que I :

I [a, b] [a, b[ ]a, b] ]a, b[

f ↗ f(I) [f(a), f(b)]
[
f(a), lim

x→b
f(x),

[ ]
lim
x→a

f(x), f(b)
] ]

lim
x→a

f(x), lim
x→b

f(x)
[

f ↘ f(I) [f(b), f(a)]
]

lim
x→b

f(x), f(a)
] [

f(b), lim
x→a

f(x)
[ ]

lim
x→b

f(x), lim
x→a

f(x)
[

Théorème II.10 (de la bijection)

Remarque 20 : Si f est continue sur I un intervalle, mais pas strictement monotone sur I, alors J = f(I) est bien
un intervalle mais pas nécessairement de même nature que I si I est semi-ouvert ou ouvert.
Exemple : si f = sin et I =

[
0; 3π

2
[
, alors f(I) = [−1; 1] est bien un intervalle mais pas de « même nature » que I.

Cependant si I est un segment, le théorème suivant assure que J = f(I) est aussi un segment.

Soient a < b deux réels, I = [a; b], f une fonction continue sur I. Alors f est bornée sur I et atteint ses bornes :
• m = infx∈I f(x) et M = supx∈I f(x) existent dans R,
• il existe u ∈ I et v ∈ I tels que m = f(u) et M = f(v),
• J = f(I) = [m; M ].

Théorème II.11 (des bornes atteintes / image d’un segment par une fonction continue)

Remarque 21 :
1. On a donc pour tout x ∈ I, m ⩽ f(x) ⩽ M et pour tout y ∈ [m; M ], il existe x ∈ [a; b] tel que y = f(x).
2. Attention a priori m n’est pas l’image de a ni même de b et de même pour M .
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III Dérivation
III.1 Rappels

Soient I un intervalle de R, a ∈ I et f : I → R.

• On dit que f est dérivable en a si lim
x→a
x̸=a

f(x) − f(a)
x − a

existe dans R. Autrement dit,

∃ℓ ∈ R, ∀ ε > 0, ∃η > 0, ∀x ∈ I ∩ [a − η; a + η] \ {a},

∣∣∣∣f(x) − f(a)
x − a

− ℓ

∣∣∣∣ ⩽ ε .

On appelle alors ℓ = lim
x→a

f(x) − f(a)
x − a

= f ′(a) le nombre dérivé de f en a.

• La fonction f est dérivable sur I si elle est dérivable en tout point de I.

Définition III.1

Soient I un intervalle de R, f : I → R. Si f est dérivable en a ∈ I, alors
• la fonction f est continue en a,
• la fonction f admet un développement limité d’ordre 1 en a donné par :

f(x) =
x→a

f(a) + f ′(a)(x − a) + o(x − a),

• la fonction f admet une tangente en a d’équation y = f ′(a)(x − a) + f(a).

Proposition III.2

Soient I un intervalle de R et f : I → R.
• Soit n ∈ N. On dit que f est de classe C n sur I si f est n-fois dérivable sur I et si la dérivée n-ième de f est

continue sur I. On note C n(I,R) ou parfois C n(I) l’ensemble des fonctions de classe n sur I à valeurs dans
R.

• La fonction f est de classe C ∞ si pour tout n ∈ N, f est n-fois dérivable. On note C ∞(I,R) ou parfois C ∞(I)
l’ensemble des fonctions de classe +∞ sur I à valeurs dans R.

Définition III.3

Remarque 22 :
• L’ensemble C 0 (I) est l’ensemble des fonctions continues sur I.
• L’ensemble C 1 (I) est l’ensemble des fonctions dérivables sur I dont la dérivée est continue sur I.
• On a les inclusions suivantes : C ∞ (I) ⊆ C n (I) ⊆ . . . ⊆ C 1 (I) ⊆ C 0 (I) ⊆ F (I,R) et C ∞ (I) = ∩

n∈N
C n (I).

La somme, le produit, l’inverse (lorsque la fonction en s’annule pas), le quotient (lorsque le dénominateur ne s’annule
pas), la composée (avec des intervalles qui concordent) de fonction dérivable, respectivement C n, respectivement
C ∞ est encore dérivable, respectivement C n, respectivement C ∞.

Proposition III.4

Remarque 23 : On rappelle que si f : J → R et g : I → J sont dérivables, alors f ◦ g est dérivable sur I et

∀x ∈ I, (f ◦ g)′ (x) = g′(x)f ′ (g(x)) .

Soient I un intervalle de R, f et g deux fonctions n fois dérivable sur I. Alors la fonction fg est dérivable sur I et

∀x ∈ R, (fg)(n) (x) =
n∑

k=0

Ç
n

k

å
f (k)(x)g(n−k)(x).

Proposition III.5 (Formule de Leibniz)
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Démonstration. Soient n ∈ N, I un intervalle de R et f : I → R et g : I → R deux fonctions n fois dérivables sur
I. Pour tout p ∈ J0; nK, posons Qp : « la fonction fg est p fois dérivable et (fg)(p) =

∑p
k=0

(
p
k

)
f (k)g(p−k). Démontrons

par récurrence que pour tout p ∈ J0; nK, la proposition Qp est vraie.
• Si p = 0, la proposition est immédiate car (fg)(0) = fg =

∑0
k=0 f (k)g(0−k).

• Soit p ∈ J0; n − 1K et supposons Qp vraie. Démontrons que Qp+1 est alors vraie. On sait que (fg)(p) =∑p
k=0

(
p
k

)
f (k)g(n−k), or pour tout k ∈ J0; pK, k ⩽ n − 1 donc f (k) est dérivable (car f est n fois dérivable)

et p − k ⩽ p ⩽ n − 1 donc g(n−k) est aussi dérivable. Donc (fg)p est aussi dérivable comme somme de produits
de fonctions dérivables. Autrement dit fg est p + 1 fois dérivable. De plus :

(fg)(p+1) =
Ä
(fg)(p)ä′

=
p∑

k=0

Ç
p

k

åÄ
f (k)g(p−k)

ä′

=
p∑

k=0

Ç
p

k

å [Ä
f (k)
ä′

g(p−k) + f (k)
Ä
g(p−k)

ä′]
=

p∑
k=0

Ç
p

k

å
f (k+1)g(p−k) +

p∑
k=0

Ç
p

k

å
f (k)g(p−k+1)

= f (p+1)g +
p−1∑
k=0

Ç
p

k

å
f (k+1)g(p−k) +

p∑
k=0

Ç
p

k

å
f (k)g(p−k+1).

On effectue le changement de variable k̃ = k + 1 dans la première somme :

(fg)(p+1) = f (p+1)g +
p∑

k=1

Ç
p

k − 1

å
f (k)g(p−k+1) +

p∑
k=1

Ç
p

k

å
f (k)g(p−k+1) + fg(p+1).

En appliquant la formule de Pascal,

(fg)(p+1) = f (p+1)g +
p∑

k=1

Ç
p + 1

k

å
f (k)g(p−k+1) + fg(p+1) =

p+1∑
k=0

Ç
p + 1

k

å
f (k)g(p−k+1).

Donc Qp+1 est vraie et on a montré que pour tout p ∈ J1; n − 1K Qp ⇒ Qp+1.
• Conclusion la propriété Qp est vraie pour tout p ∈ J0; nK, notamment Qn est vraie.

□

Soit I un intervalle de R, a ∈ I et f : I → R.

• On dit que f est dérivable à droite en a ∈ I si lim
x→a
x>a

f(x) − f(a)
x − a

existe.

• On dit que f est dérivable à gauche en a ∈ I si lim
x→a
x<a

f(x) − f(a)
x − a

existe.

Définition III.6

Remarque 24 : Contrairement à la continuité, ici on ne regarde par la valeur du taux d’accroissement lorsque x = a
évidemment !

Soit I un intervalle de R, a ∈ I et f : I → R. La fonction f est dérivable en a si et seulement si
1. la fonction f est dérivable à droite en a,
2. la fonction f est dérivable à gauche en a,
3. les demi-pentes coïncident :

lim
x→a
x>a

f(x) − f(a)
x − a

= lim
x→a
x<a

f(x) − f(a)
x − a

.

Proposition III.7
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III.2 Théorème des accroissements finis

Soient I un intervalle de R, a ∈ I̊, f : I → R. Si a est l’abscisse intérieur d’un extremum local de f et si f est
dérivable en a, alors a est un point critique de f , i.e. f ′(a) = 0.

Lemme III.8

Démonstration. Soient I un intervalle de R, a ∈ I̊ et f : I → R. On suppose que a est un extremum local de f . Si
f(a) est un maximum alors pour tout u > a, f(u)−f(a)

u−a ⩽ 0 et pour tout v < a, f(v)−f(a)
v−a ⩾ 0. Par passage à la limite

on a par dérivée à droite f ′(a) ⩽ 0 et par dérivée à gauche f ′(a) ⩾ 0 et donc f ′(a) = 0. On procède de même si f(a)
est un minimum.

□

Soit a < b deux réels, f : [a; b] → R une fonction continue sur [a; b] et dérivable sur ]a; b[. Si f(a) = f(b), alors il
existe c ∈]a; b[ tel que f ′(c) = 0.

Théorème III.9 (Théorème de Rolle)

Démonstration. La fonction f est continue sur [a; b], donc d’après le théorème II.11, on sait que f est bornée et
atteint ses bornes. Notons m = infx∈[a;b] f(x) = minx∈[a;b] f(x) et M = supx∈[a;b] f(x) = minx∈[a;b] f(x).

1. Premier cas, f(a) = f(b) = m = M . Alors la fonction f est constante sur [a; b] et donc pour tout c ∈]a; b[,
f ′(c) = 0.

2. Deuxième cas, m = f(a) = f(b) mais M ̸= f(a) = f(b). Donc il existe c ∈]a; b[ tel que f(c) = M . Donc M est
un extremum local (car maximum) de f atteint à l’intérieur de I =]a; b[ sur lequel f est dérivable. Par le lemme
précédent, on sait que f ′(c) = 0.

3. Troisième cas, m ̸= f(a) = f(b). Alors il existe c ∈]a; b[ tel que f ′(c) = 0. A nouveau, m est un extremum local
de f sur [a; b] atteint à l’intérieur de I =]a; b[ sur lequel f est dérivable. Par le lemme précédent, on en déduit
que f ′(c) = 0.

Dans tous les cas, on a bien établi l’existence de c ∈]a; b[ tel que f ′(c) = 0.
□

Remarque 25 :
• Graphiquement, cela signifie que si f(a) = f(b) alors le graphe de f admet une tangente horizontale entre a

et b.
• En cinématique, cela signifie que si un mobile se déplace sur un axe et revient à son point de départ, néces-

sairement il a eu, au cours de sa trajectoire, un instant pour lequel sa vitesse s’est annulée.

Soient a < b deux réels, f : [a; b] → R une fonction continue sur [a; b] et dérivable sur ]a; b[. Alors,

∃c ∈]a; b[, f(b) − f(a) = f ′(c) (b − a) .

Théorème III.10 (Identité des accroissements finis)

Démonstration. On considère la fonction φ définie pour tout x ∈ [a; b] par φ(x) = f(x)−f(a)− f(b)−f(a)
b−a (x−a). La

fonction φ est continue sur [a; b] et dérivable sur ]a; b[ comme somme de fonctions continues respectivement dérivables.
De plus,

φ(a) = 0 = φ(b).

Par conséquent, d’après le théorème de Rolle, il existe c ∈]a; b[ tel que φ′(c) = 0. Or pour tout x ∈]a; b[,

φ′(x) = f ′(x) − f(b) − f(a)
b − a

.

En particulier, φ′(c) = f ′(c) − f(b)−f(a)
b−a = 0 et on conclut que

f(b) − f(a) = f ′(c) (b − a) .

□
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Remarque 26 :
• Graphiquement, cela signifie que le graphe de f admet une tangente entre a et b qui est parallèle à (AB) avec

A(a; f(a) et B(b; f(b)) et dont la pente est bien donnée f(b)−f(a)
b−a .

• En cinématique, cela signifie que si un mobile a eu une vitesse moyenne de 100 km/h par exemple, nécessai-
rement il a existé un moment où sa vitesse instantanée a été de 100 km/h.

Soient a < b, f : [a; b] → R une fonction continue sur [a; b] et dérivable sur ]a; b[. La fonction f est croissante
(respectivement décroissante) sur [a; b] si et seulement si f ′ est positive (respectivement négative) sur ]a; b[.

Proposition III.11

Démonstration. Si f est croissante sur [a; b] alors le taux d’accroissement est positif et par passage à la limite, f ′

est positive.
Réciproquement, si f ′ est positive sur ]a; b[, alors pour tout α, β ∈ [a; b], α < β, la fonction f étant continue sur [α; β]
et dérivable sur ]α; β[, d’après l’identité des accroissements finis, il existe γ ∈]α; β[ tel que

f (β) − f (α) = f ′ (γ) (β − α) .

Puisque γ ∈]a; b[, on sait que f ′ (γ) ⩾ 0 et on en déduit que f (β) − f (α) ⩾ 0. Ceci étant vrai pour tout (α, β) ∈ [a; b]
avec α < β, on en déduit que f est croissante sur [a; b].

□

Soient a < b deux réels et f : [a; b] → R une fonction continue sur [a; b] et dérivable sur ]a; b[. La fonction f est
constante sur [a; b] si et seulement si f ′ est nulle sur ]a; b[.

Corollaire III.12

Soient a < b et f : [a; b] → R une fonction continue sur [a; b] et dérivable sur ]a; b[. Si f ′ est positive sur [a; b] et ne
s’annule qu’en un nombre fini de points alors f est strictement croissante sur [a; b].

Corollaire III.13

Soient I un intervalle de R et f : I → R une fonction dérivable sur I. Si f ′ est bornée sur I :

∃K ∈ R+, ∀t ∈ I, |f ′(t)| ⩽ K,

alors,
∀ (x, y) ∈ I2, |f(y) − f(x)| ⩽ K |x − y| .

Théorème III.14 (Théorème des accroissements finis)

Démonstration. Soit (x, y) ∈ I2. Si x = y, alors : pas intéressant. Si x ̸= y. Supposons x < y (on peut traiter le cas
x > y de la même façon). Alors, puisque I est un intervalle, [x; y] ⊆ I. Or f est dérivable sur I donc f est continue
sur ]x; y[ et dérivable sur [x; y]. Donc par l’identité des accroissements finis, il existe cx,y ∈ ]x; y[ tel que

f(y) − f(x) = f ′ (cx,y) (y − x) .

Donc
|f(y) − f(x)| = |f ′ (cx,y)| |y − x| .

Or cx,y ∈ ]x; y[ ⊆ I. Donc par hypothèse, |f ′ (cx,y)| ⩽ K. Conclusion,

|f(y) − f(x)| = |f ′ (cx,y)| |y − x| .

□

Remarque 27 :
• Graphiquement, en notant m = infc∈]a;b[ f ′(c) et M = supc∈]a;b[ f ′(c) par l’identité des accroissements finis,

il découle que pour tout x ∈ [a; b],

f(a) + m(x − a) ⩽ f(x) ⩽ f(a) + M(x − a).

Par conséquent, la fonction f a un graphe qui se situe entre les droites d’équation f(a) + M (x − a) et f(a) +
m(x − a).
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• En cinématique, cela correspond au fait par exemple qu’une voiture dont la vitesse instantanée ne dépasse
jamais 100 km/h ne pourra pas parcourir plus de 100 km en une heure.

Soient a < b deux réels et f : [a; b] → R. Si f est C 1 sur [a; b] alors K = supc∈]a;b[ |f ′(c)| < +∞ et

∀ (x, y) ∈ [a; b]2 , |f(y) − f(x)| ⩽ K |y − x| .

Corollaire III.15

Démonstration. Si f est C 1 sur [a; b], la fonction f ′ est continue sur [a; b] donc la fonction f ′ est bornée (et atteint
ses bornes) sur [a; b]. Donc K = supc∈]a;b[ |f ′(c)| existe dans R et on applique le théorème des accroissements finis.

□

Soient I un intervalle de R et f : I → R.
1. Soit k ∈ R. On dit que f est k-lipschitzienne sur I si

∀(x, y) ∈ I2, |f(y) − f(x)| ⩽ k |y − x| .

2. On dit que f est lipschitzienne sur I s’il existe k ∈ R pour lequel f est k-lipschitzienne sur I.

Définition III.16

Soient I un intervalle de R et f : I → R une fonction dérivable sur I. Les assertions suivantes sont équivalentes.
1. La fonction f est lipschitzienne sur I.
2. La fonction f ′ est bornée sur I.

Proposition III.17

Démonstration. (2) ⇒ (1). Il s’agit du théorème des accroissements finis.
(1) ⇒ (2). Si f est k-lipschitzienne, k ∈ R, alors pour tout x ∈ I et tout y ∈ I \ {x}, le taux d’accroissement de f
en x est inférieur à k :

−k ⩽ τx(y) = f(y) − f(x)
y − x

⩽ k

Par passage à la limite quand y → x, on obtient que −k ⩽ f ′(x) ⩽ k et ce pour tout x ∈ I ce qui démontre bien le
point (2).

□

Exemple 28 :
1. La fonction cosinus a pour dérivée − sin qui est bornée par 1 sur R. Par conséquent, la fonction cosinus est

1-lipschitzienne sur R.
2. Soient a < b deux réels. La fonction exponentielle est C 1 sur [a; b] par conséquent d’après le théorème des

accroissements finis,
∀(x, y) ∈ [a; b], |ey − ex| ⩽ sup

z∈[a;b]
|ez| |y − x| = eb |y − x| ,

par positivité et croissance de l’exponentielle. Donc la fonction exponentielle est eb-lipschitzienne sur [a; b]. Notez
cependant que la fonction exponentielle n’est pas lipschitzienne sur R.
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III.3 Théorème de la limite de la dérivée

Soient I un intervalle de R, a ∈ I, l ∈ R et f : I → R. On suppose que
1. f est continue sur I,
2. dérivable sur I \ {a}
3. et on suppose que lim

x→a
x ̸=a

f ′(x) = l.

Alors le taux d’accroissement de f en a admet l pour limite en a :

lim
x→a
x ̸=a

τa(x) = lim
x→a
x ̸=a

f(x) − f(a)
x − a

= l.

• Si l ∈ R, alors f est dérivable en a, f ′(a) = l et f ′ est continue en a :

f ′(a) = lim
x→a
x ̸=a

f ′(x).

• Si l = ±∞, alors f n’est pas dérivable en a mais admet une tangente verticale.

Théorème III.18 (de la limite de la dérivée)

Démonstration. Soit x ∈ I \ {a}. Par l’identité des accroissements finis, il existe cx ∈]a; x[ (ou ]x; a[) telle que

f(x) − f(a)
x − a

= f ′ (cx) .

Or quand x → a, on a cx → a. Donc

lim
x→a
x ̸=a

f(x) − f(a)
x − a

= lim
x→a
x ̸=a

f ′ (cx) = lim
u→a
x ̸=a

f ′ (u) = l.

□

Soient I un intervalle de R, a ∈ I, l ∈ R et f : I → R, une fonction continue sur I et C 1 sur I \ {a}. Si f ′ admet
une limite finie l en a, lim

x→a
x ̸=a

f ′(x) = l alors f est C 1 sur I et f ′(a) = l.

Corollaire III.19 (Théorème de prolongement C 1)

Exemple 29 : La fonction x 7→ cos (
√

x) est définie sur I = R+, continue sur I et dérivable sur I \ {0}. Sa dérivée
est donnée par

∀x ∈ R∗
+, f ′(x) = − sin (

√
x)

2
√

x
.

Or, puisque
√

x → 0 quand x → 0, on a aussi que

lim
x→0
x>0

f ′(x) = lim
u→0
u>0

−1
2

sin (u)
u

= −1
2 .

Donc par le théorème de la limite de la dérivée, on en déduit que f est C 1 en 0 et f ′(0) = − 1
2 . Or f est aussi C 1 sur

I \ {0}. Conclusion, f est C 1 sur I = R+.

IV Extension aux fonctions complexes
Attention, on parle ici de fonctions R → C à valeurs complexes. La variable de départ, elle, reste et demeure réelle !
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Soit a ∈ R, I un voisinage de a, f : I → C et l ∈ C. On dit que f tend vers l lorsque x tend a, noté lim
x→a

f(x) = l

si et seulement si la fonction réelle x 7→ |f(x) − l| tend vers 0 lorsque x tend vers a :

lim
x→a

f(x) = l ⇔ lim
x→a

|f(x) − l| = 0

⇔ ∀ ε > 0, ∃η > 0, ∀x ∈ I, (|x − a| ⩽ η) ⇒ (|f(x) − l| ⩽ ε) .

Définition IV.1

Remarque 30 : Il est toujours possible de considérer la limite quand x tend vers a = +∞ ou a = −∞, cependant on
ne définit pas C, il y a dans C une infinité de façon de tendre vers l’infini. En conséquence, on ne parle pas de limite
vers +∞ ou −∞ dans C. La limite l est toujours une limite finie l ∈ C.

Exemple 31 : On a lim
x→+∞

eix

1 + x2 = 0. En effet
∣∣∣ eix

1+x2

∣∣∣ = 1
1+x2 −→

x→+∞
0.

Soit I un intervalle de R et f : I → C. La fonction f est dite bornée sur I si et seulement si |f | est bornée sur I
ou de façon équivalente si et seulement si Re (f) et Im (f) sont bornées sur I.

Définition IV.2

Une fois la limite dans C, on a les mêmes définitions de la continuité et de la dérivabilité dans C.

Soit I un intervalle de R, a ∈ I et f : I → C.
• On dit que f est continue en a si lim

x→a
f(x) existe dans C.

• On dit que f est dérivable en a si lim
x→a

f(x) − f(a)
x − a

existe dans C.

Définition IV.3

Soit I un intervalle de R, a ∈ I, l ∈ C et f : I → C. Les assertions suivantes sont équivalentes.
1. La fonction f admet une limite l en a, respectivement est continue en a, respectivement est dérivable en a.
2. La fonction f admet une limite l en a, respectivement est continue en a, respectivement est dérivable en a.
3. Les fonctions Re(f) et Im(f) admet pour limite Re(l) et Im(l) en a, respectivement sont continues en a,

respectivement sont dérivables en a.

Proposition IV.4

Pour les fonctions à valeurs dans C,
• les opérations algébriques (somme, produit, inverse) sur les limites, les fonctions continues et les fonctions

dérivables restent vraies,
• les fonctions ayant une limite (finie) sont bornées,
• la caractérisation séquentielle reste vraie.

Proposition IV.5

Pour les fonctions à valeurs dans C,
• il n’existe pas de théorème d’encadrement,
• il n’existe pas de théorème de limite monotone,
• le théorème des valeurs intermédiaires, le théorème de la bijection, le théorème de Rolle et l’identité des

accroissements finis sont FAUX !

Anti-Proposition IV.6

Exemple 32 : La fonction f : x 7→ eix est C 1 sur [0; 2π] et on a f(0) = f(2π) et pourtant pour tout x ∈ [0; 2π], on
a f ′(x) = i eix ̸= 0. L’identité des accroissements finis est donc mise en défaut dans cet exemple.
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Soient a < b et f : [a; b] → C une fonction continue sur [a; b] et dérivable sur ]a; b[ alors

|f(b) − f(a)| ⩽ sup
x∈]a;b[

|f ′(x)| (b − a) .

Théorème IV.7 (Théorème des accroissements finis)

Karl WEIERSTRASS (Osterfelde (Allemagne) 1815 - Berlin 1897) fut un ma-
thématicien allemand né dans une famille catholique avec un père à la personnalité
écrasante. Très bon élève dans le secondaire, il dut commencer par étudier le droit
et les finances. Indifférent à ces disciplines, il découvrit par la suite les mathéma-
tiques pour lesquelles il se passionna. Il enseigna d’abord en lycée avant d’obtenir
un poste de professeur à l’Université de Berlin. Il fut réputé pour ses talents de
pédagogue. Weierstrass publia très peu, ses résultats nous sont connus le plus sou-
vent grâce aux notes de cours prises par ses élèves. Ses apports sont variés, citons
par exemple sa construction de R, sa construction de nouvelles fonctions comme
les séries entières (voir le programme de deuxième année). Il est l’un des pre-
miers à construire une fonction continue partout mais dérivable nulle part ! ! Il
démontre également un théorème d’approximation des fonctions continues par des
polynômes. Il a également travaillé sur l’algèbre linéaire et donna une définition
du déterminant (cf fin d’année).

Weierstrass est surnommé le père de l’analyse moderne. Il est à l’origine d’une très grande rigueur dans les mathé-
matiques et fut le premier à définir la continuité « à l’aide de epsilons »

C’est l’histoire d’un ingénieur, un physicien, un mathématicien, d’un philosophe et d’un étudiant en médecine. On
leur demande combien fait 5 − 3 + 2. L’ingénieur sort sa machine et répond fièrement « 3, 98 ! » Le physicien sort
également sa machine mais plus prudent répond « 4, 01 à 10−2 près ». Le mathématicien plus long à la réflexion
répond enthousiaste : « Aucune idée cependant j’ai deux démonstrations élégantes de l’existence et de l’unicité de
la solution ! ». Le philosophe rétorque avec un sourire en coin « Qu’entendez-vous par 5 − 3 + 2 ? ». L’étudiant en
médecine répond alors « Mais voyons, cela fait 4 ! ». Impressionnés les autres lui demandent :
« -Mais comment as-tu fait pour le calculer ?
-Oh, je l’avais appris par coeur. »
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