

Fiche de révisions : fonctions usuelles

I Le cours

- 1. Tracer le graphe de la fonction exponentielle / logarithme / cosinus hyperbolique / sinus hyperbolique /arccosinus / arcsinus / arctan, y faire apparaître les valeurs remarquables, les tangentes remarquables, les asymptotes remarquables.
- 2. Enoncer la croissance comparée du logarithme en $+\infty$ /en 0, de l'exponentielle en $-\infty$ /en $+\infty$.
- 3. Donner le domaine de définition, de continuité, de dérivabilité et la dérivée de la fonction exponentielle / logarithme / cosinus hyperbolique / sinus hyperbolique / arccosinus / arcsinus / arctan.
- 4. Enoncer l'inégalité usuelle sur le logarithme et celle sur l'exponentielle.
- 5. Donner les différents domaines de définition de $x \mapsto x^a$.
- 6. Définir le logarithme et l'exponentielle en base a.
- 7. Enoncer la formule reliant les carrés des fonctions hyperboliques et celle sur arctan.

II Les savoir-faire

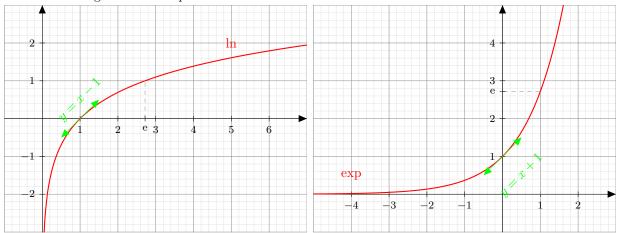
- 1. Déterminer un domaine de définition et un domaine de dérivabilité (bien recommencer les calculs pour la racine carrée, la valeur absolue, l'arcsinus et l'arccos pour le domaine de dérivabilité).
- 2. Dériver les fonctions usuelles et leurs composées.
- 3. Simplifier l'expression d'une fonction en calculant sa dérivée.
- 4. Résoudre une équation mettant en jeu des fonctions puissances ou logarithme et exponentielle en base a.
- 5. Résoudre une équation avec des fonctions circulaires réciproques en composant par une fonction trigonométrique.

III Les erreurs à éviter

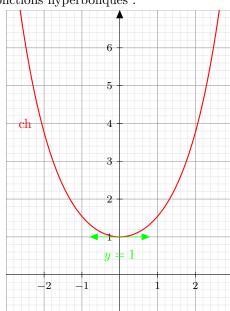
- 1. Les fonctions arcsinus et arccosinus ne sont pas dérivables sur leur domaine de définition.
- 2. Ne pas inventer de formule en copiant la trigonométrie, par exemple $\arctan \neq \frac{\arcsin}{\arccos}$, l'arccos n'est pas paire etc.
- 3. Attention aux simplification $\arccos(\cos(\theta))$ ou $\arcsin(\sin(\theta))$ ou $\arctan(\tan(\theta))$ il faut regarder dans quel intervalle se trouve θ .
- 4. En cas de composée de avec d'autres fonctions ne pas simplement « ouvrir » l'intervalle. Exemple : $x \mapsto \arccos(1-2x^2)$ est définie sur [-1;1] mais n'est pas dérivable sur [-1;1].
- 5. Primitiver une fonctions UNIQUEMENT sur un intervalle et ne pas oublier la constante d'intégration.
- 6. Si l'on compose par une fonction non injective (sinus, cosinus, tangente, fonction carrée...) ne pas écrire d'équivalent.
- 7. La formule $\arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$ n'est valide que sur \mathbb{R}_+^* , changer de signe sur \mathbb{R}_-^* .

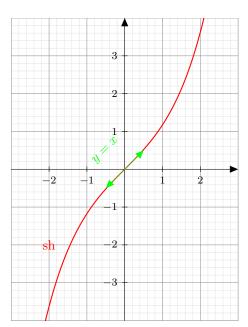
IV Les réponses du cours

 $1. \ \ Les \ fonctions \ logarithme \ et \ exponentielle:$

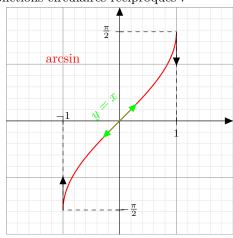


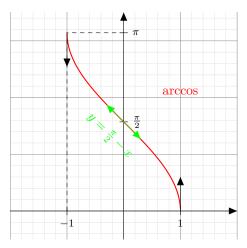
Les fonctions hyperboliques :

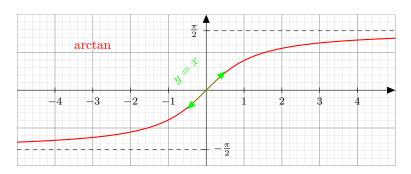




Les fonctions circulaires réciproques :







2. • Soient a > 0 et b > 0. On a

$$\lim_{\substack{x \to 0 \\ x > 0}} x^b \left| \ln(x) \right|^a = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} \frac{\ln^a(x)}{x^b} = 0.$$

• Soient a > 0 et b > 0. On a

$$\lim_{x \to -\infty} \left| x \right|^b \mathrm{e}^{ax} = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} \frac{\mathrm{e}^{ax}}{x^b} = +\infty.$$

3.

Fonction	Définition/ Continuité	Dérivabilité	Dérivée
$x \mapsto e^x$	\mathbb{R}		$x \mapsto e^x$
ln	$]0;+\infty[$		$x \mapsto \frac{1}{x}$
ch	\mathbb{R}		$x \mapsto \operatorname{sh}(x)$
sh	\mathbb{R}		$x \mapsto \operatorname{ch}(x)$
arcsin	[-1;1]]-1;1[$x \mapsto \frac{1}{\sqrt{1-x^2}}$
arccos	[-1;1]]-1;1[$x \mapsto \frac{-1}{\sqrt{1-x^2}}$
arctan	\mathbb{R}		$x \mapsto \frac{1}{1+x^2}$

- 4. Pour tout $x \in \mathbb{R}$, $e^x \ge 1 + x$ et pour tout $x \in]-1; +\infty[$, $\ln(1+x) \le x$.
- 5. Soit $f_a:x\mapsto x^a$ et \mathcal{D}_a son domaine de définition. On a

$$\mathcal{D}_a = \begin{cases} \mathbb{R} & \text{si } a \in \mathbb{N} \\ \mathbb{R}^* & \text{si } a \in \mathbb{Z} \setminus \mathbb{N} \\ \mathbb{R}^*_+ & \text{si } a \in \mathbb{R} \setminus \mathbb{Z}. \end{cases}$$

En particulier, pour tout $(a,b)\in\mathbb{R}_+^*\times\mathbb{R},$ on retiendra que

$a^b = e^{b \ln(a)}$

6. Soit $a \in \mathbb{R}_+^* \setminus \{1\}$, on a

$$\forall x \in \mathbb{R}_+^*, \qquad \log_a(x) = \frac{\ln(x)}{\ln(a)}.$$

Soit $a \in \mathbb{R}_+^*$, on a

$$\forall x \in \mathbb{R}, \qquad \exp_a(x) = a^x = e^{x \ln(a)}.$$

- 7. On a les relations suivantes :
 - $\forall x \in \mathbb{R}, \operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$

 - $\forall x \in \mathbb{R}_+^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$ $\forall x \in \mathbb{R}_-^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$