

Fiche de révisions : équations complexes

I Le cours

- 1. Définir l'exponentielle complexe.
- 2. Préciser $|e^z|$, arg (e^z) , Re (e^z) et Im (e^z) .
- 3. Définir une racine carrée complexe.
- 4. Enoncer la proposition retournant les racines carrées d'un complexe.
- 5. Donner les racines d'un trinôme. On veillera à bien définir toutes les quantités.
- 6. Enoncer la proposition reliant les coefficients d'un trinôme à ses racines.
- 7. Définir l'ensemble des racines *n*-ièmes de l'unité. Que dire du produit de deux racines *n*-ième de l'unité? de l'inverse d'une racine *n*-ième de l'unité? de son conjugué?
- 8. Caractériser l'ensemble des racines n-ièmes de l'unité.
- 9. Définir *j*. Que vaut j^2 ? j^3 ? $1 + j + j^2$?
- 10. Caractériser les racines n-ièmes de l'unité par une somme.
- 11. Factoriser $z^n 1$ et $1 + z + \cdots + z^{n-1}$.
- 12. En
oncer la propriété donnant les racines n-ièmes d'un complexe quel
conque.
- 13. Caractériser l'alignement des trois points et les triangles rectangles.
- 14. Donner l'application complexe associée à une translation, une rotation et une homothétie.

II Les savoir-faire

- 1. Manipuler l'exponentielle complexe, savoir résoudre une équation avec de l'exponentielle complexe.
- 2. Savoir calculer les deux racines carrées d'un complexe :
 - par la forme polaire en priorité lorsque c'est possible,
 - sinon par la forme algébrique : $\omega^2=z \iff \begin{cases} \omega^2=z \\ \left|\omega\right|^2=\left|z\right| \end{cases} \iff \dots$
- 3. Résoudre une équation du second degré.
- 4. Déterminer les racines d'un complexe de plus haut degré :
 - par la factorisation en trouvant une racine « évidente »
 - en déterminant les racines réelles (z=x) et/ou imaginaires pures (z=iy), puis en factorisant.
- 5. Savoir donner les racines n-ièmes de 1 ou d'un complexe z quelconque.
- 6. Savoir manipuler une racine n-ième de l'unité avec les relations suivantes :

$$\omega^n = 1, \qquad 1 + \omega + \dots + \omega^{n-1} = 0.$$

- 7. Résoudre une équation de la forme $Z_1^n = Z_2^n$ ou $1 + Z + Z^2 + \cdots + Z^n = 0$.
- 8. Savoir passer d'un problème géométrique à une équation complexe et réciproquement.
- 9. Savoir représenter graphiquement un ensemble de complexes.
- 10. Savoir reconnaître une similitude:
 - on cherche ω le point fixe,
 - on réécrit l'équation $s(z) = a(z \omega) + \omega$,
 - on conclut.

III Les erreurs à éviter

- 1. L'exponentielle complexe n'est jamais nulle mais n'est pas forcément positive : un complexe quelconque n'a pas de signe. JAMAIS d'inégalité dans $\mathbb{C}!$
- 2. Le symbole $\sqrt{\cdot}$ est strictement réservé aux réels positifs. Ne jamais écrire $\sqrt{-3}$, \sqrt{i} ou $\sqrt{5+2i}$.
- 3. Ne pas confondre les racines n-ièmes de l'unité avec les racines n-ièmes de z.
- 4. Il y a toujours n racines n-ièmes. L'indice k varie donc entre 0 et n-1 et non entre 0 et n.
- 5. Ne pas confondre \mathbb{U}_n et \mathbb{U} .
- 6. Ne pas confondre i et j. Le j en physique n'est pas le même que celui en maths.
- 7. z + iz' = 0 n'implique pas z = z' = 0 sauf si z et z' sont tous les deux réels.

IV Les réponses du cours

- 1. Soit $z = a + ib \in \mathbb{C}$, $(a, b) \in \mathbb{R}^2$. On a $e^z = e^a e^{ib} = e^a \cos(b) + i e^a \sin(b)$.
- 2. Soit $z = a + ib \in \mathbb{C}$, $(a, b) \in \mathbb{R}^2$. On a

$$|e^z| = e^a$$
, $\arg(e^z) \equiv b \ [2\pi]$, $\operatorname{Re}(e^z) = e^a \cos(b)$, $\operatorname{Im}(e^z) = e^a \sin(b)$.

- 3. Soit $(z,\omega) \in \mathbb{C}^2$. On dit que ω est une racine carrée de z si et seulement si $\omega^2 = z$.
- 4. Soit $z = r e^{i\theta} \in \mathbb{C}^*$, avec $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$. Alors l'équation $\omega^2 = z$ d'inconnu $\omega \in \mathbb{C}$ admet exactement deux solutions données par :

$$\omega_1 = \sqrt{r} e^{i\frac{\theta}{2}}$$
 et $\omega_2 = -\omega_1 = \sqrt{r} e^{i\left(\frac{\theta}{2} + \pi\right)}$.

- 5. Soient $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$. Posons $\Delta = b^2 4ac$.
 - Si $\Delta = 0$, alors l'équation $az^2 + bz + c = 0$ admet une unique solution $z_0 = -\frac{b}{2a}$.
 - Si $\Delta \neq 0$, alors l'équation $az^2 + bz + c = 0$ admet exactement deux solutions données par

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$,

où δ est UNE racine carrée de Δ .

6. Soient $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$ et z_1 et z_2 les deux racines (éventuellement confondues) de $az^2 + bz + c$. Alors,

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

7. Soit $n \in \mathbb{N}^*$. On a

$$\mathbb{U}_n = \{ z \in \mathbb{C} \mid z^n = 1 \}.$$

De plus, pour tout $(z, z') \in \mathbb{U}_n$, on a

$$zz' \in \mathbb{U}_n, \qquad \frac{1}{z} = \overline{z} \in \mathbb{U}_n.$$

8. Soit $n \in \mathbb{N}^*$. On a l'égalité suivante :

$$\mathbb{U}_n = \left\{ e^{i\frac{2k\pi}{n}} \mid k \in \llbracket 0; n-1 \rrbracket \right\}.$$

9. On a $j = e^{i\frac{2\pi}{3}}$. De plus,

$$j^2 = \overline{j},$$
 $j^3 = 1$ et $1 + j + j^2 = 0.$

10. Soient $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On a

$$z \in \mathbb{U}_n \setminus \{1\}$$
 $\Leftrightarrow \sum_{k=0}^{n-1} z^k = 1 + z + \dots + z^{n-1} = 0.$

11. Soit $n \in \mathbb{N}^*$. Pour tout $z \in \mathbb{C}$, on a

$$z^{n} - 1 = \prod_{k=0}^{n-1} \left(z - e^{i\frac{2k\pi}{2}} \right)$$
 et $1 + z + \dots + z^{n-1} = \prod_{k=1}^{n-1} \left(z - e^{i\frac{2k\pi}{2}} \right)$.

12. Soit $z = r e^{i\theta} \in \mathbb{C}^*$, avec $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$. Pour tout $\omega \in \mathbb{C}$, on a

$$\omega^n = z \qquad \Leftrightarrow \qquad \exists k \in [0; n-1], \quad \omega = \sqrt[n]{r} \, \mathrm{e}^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} \, .$$

- 13. Soient $A(z_A)$, $B(z_B)$ et $C(z_C)$ trois points distincts. On a
 - A, B et C alignés si et seulement si $\arg\left(\frac{z_B-z_A}{z_C-z_A}\right)\equiv 0 \ [\pi]$ i.e. $\frac{z_B-z_A}{z_C-z_A}\in\mathbb{R}$.
 - ABC rectangle en A si et seulement si $\arg\left(\frac{z_B-z_A}{z_C-z_A}\right)\equiv\frac{\pi}{2}\ [\pi]$ i.e. $\frac{z_B-z_A}{z_C-z_A}\in i\mathbb{R}$.
- 14. Soit $b \in \mathbb{C}$. La translation de vecteur $\overrightarrow{u}(b)$ est caractérisée par

$$\begin{array}{ccc} & \mathbb{C} & \to & \mathbb{C} \\ \tau_{\overrightarrow{u}} : & & & \\ z & \mapsto & z+b \end{array}$$

• Soient $\theta \in \mathbb{R}$ et $\omega \in \mathbb{C}$. La rotation d'angle θ et de centre $\Omega\left(\omega\right)$ est caractérisée par

$$\begin{array}{cccc} & \mathbb{C} & \to & \mathbb{C} \\ & & & \\ & z & \mapsto & \mathrm{e}^{i\,\theta}\,(z-\omega) + \omega\,. \end{array}$$

• Soient $k \in \mathbb{R}$ et $\omega \in \mathbb{C}$. L'homothétie de rapport k et de centre $\Omega(\omega)$ est caractérisée par

$$h_{\Omega,k}:$$

$$z \mapsto k(z-\omega) + \omega.$$