

TD 9 Equations différentielles

Exercice 1 Résoudre les équations différentielles suivantes sur les intervalles précisés :

1.
$$y' + 2y = x^2 - 2x + 3 \operatorname{sur} \mathbb{R}$$

1.
$$y' + 2y = x^2 - 2x + 3 \text{ sur } \mathbb{R}$$
. 2. $(1+x^2)y' - 2xy = (1+x^2)^2 \text{ sur } \mathbb{R}$.

3.
$$xy' + y = \cos x \operatorname{sur} \mathbb{R}_+^*$$

3.
$$xy' + y = \cos x \text{ sur } \mathbb{R}_+^*$$
. 4. $(1-x)y' + y = \frac{x-1}{x} \text{ sur }]1, +\infty[$.

5.
$$\sqrt{1-x^2}y' + y = 1 \text{ sur }]-1,1[.$$
 6. $\operatorname{sh}(x)y' - \operatorname{ch}(x)y = 1 \text{ sur } \mathbb{R}_+^*.$

6.
$$\operatorname{sh}(x)y' - \operatorname{ch}(x)y = 1 \operatorname{sur} \mathbb{R}_+^*$$

Exercice 2 Donner la solution du problème de Cauchy

$$\begin{cases} \operatorname{ch}(t)y' + \operatorname{sh}(t)y = 1 + t^2 \\ y(0) = 1 \end{cases}$$

Exercice 3 On cherche à résoudre sur \mathbb{R} l'équation différentielle (E): $ty'-2y=t^3$.

- 1. Résoudre l'équation différentielle (E) sur \mathbb{R}_{+}^{*} , puis sur \mathbb{R}_{-}^{*} .
- 2. Déterminer les solutions de (E) sur \mathbb{R}
- 3. Déterminer les solutions de (E) sur \mathbb{R} vérifiant y(1) = 0.

Exercice 4 Donner les solutions réelles des équations différentielles suivantes :

1.
$$y'' + y' + y = e^x$$

2.
$$y'' + 2y' + y = x e^x$$

3.
$$y'' + y' - 2y = \sin(2x)$$

4.
$$y'' + 2y' + y = 2\cos^2(x)$$

Exercice 5 Equation de Ricatti. Déterminer les solutions définies sur \mathbb{R} et ne s'annulant pas de l'équation différentielle :

$$y' + 3y + y^2 = 0$$

Indication: Considérer la fonction $z = \frac{1}{u}$.

Exercice 6 Equation d'Euler. Résoudre l'équation différentielle suivante sur \mathbb{R}_+^*

$$x^2y'' + 4xy' + 2y = 0$$

 $Indication: Poser\ x = e^t.$

Pour aller plus loin

Exercice 7 Résoudre sur $\mathbb R$ les équations non normalisées suivantes

1.
$$(1-x)y' + y = \frac{x-1}{x}$$

$$2. y'\cos x + y\sin x = 1$$

Exercice 8 Equation de Bernoulli. Déterminer les solutions définies sur \mathbb{R} et à valeurs strictement positives de l'équation différentielle :

$$(1+x^2)y' = 4xy + 4x\sqrt{y}$$

Indication: Considérer la fonction $z = \sqrt{y}$.

Exercice 9 On considère l'équation différentielle

$$(L): x^2y'' + 4xy' + (2+x^2)y = 0$$

- 1. Intégrer l'équation (L) sur \mathbb{R}_+^* et \mathbb{R}_-^* en posant $u=x^2y$.
- 2. Existe-t-il des solutions de (L) sur \mathbb{R} ?

Rab

Exercice 10 Résoudre sur \mathbb{R} les équations différentielles suivantes :

$$1. \quad y' + y = 2\sin(x)$$

2.
$$y' + y = \frac{1}{1+e^x}$$

3.
$$y' - y = (x+1)e^x$$

4.
$$y' - 2y = \cos(3x) + e^{2x}$$

5.
$$y' + 2y = (x^2 + 1)e^{-x}$$

6.
$$u' + iv = (x+1)\cos(x)$$

7.
$$y' + y = x \operatorname{ch}(x)$$

Exercice 11 Résoudre les équations différentielles suivantes sur \mathbb{R} ou l'intervalle précisé :

1.
$$(1+x^2)y' + xy = 1 + 2x^2$$
.

1.
$$(1+x^2)y' + xy = 1 + 2x^2$$
. 2. $(x \ln x)y' - y = \ln x \text{ sur } [1, +\infty[$.

3.
$$2xy' + y = x^n$$
, $n \in \mathbb{N}$ sur \mathbb{R}_+^* et \mathbb{R}_+^* 4. $(1 + \cos^2 x)y' - \sin(2x)y = \cos x$.

4.
$$(1 + \cos^2 x)y' - \sin(2x)y = \cos x$$

5.
$$y' \cos x + y \sin x = 1 \text{ sur }]0, \pi[.$$
 6. $\operatorname{ch}(x)y' - \operatorname{sh}(x)y = \operatorname{sh}^{3}(x).$

6.
$$\operatorname{ch}(x)y' - \operatorname{sh}(x)y = \operatorname{sh}^{3}(x)$$

Exercice 12 On considère l'équation différentielle

$$(E): x(x+1)y' + y = \arctan(x)$$

- 1. Donner les solutions réelles de (E) sur l'intervalle $K =]0, +\infty[$.
- 2. Préciser les solutions réelles de (E) sur les intervalles $I=]-\infty,-1[$ et J=]-1,0[.

Exercice 13 Donner les solutions des équations différentielles suivantes :

1.
$$y'' + 2y' + 2y = 2x$$

2.
$$y'' + y = x^2 + 1$$

3.
$$y'' - 3y' + 2y = 2x^2$$

Exercice 14 Donner les solutions des équations différentielles suivantes :

1.
$$y'' + y' - 2y = (x^2 + 1)e^x$$

2.
$$y'' + 2y' + 2y = \operatorname{sh}(x)$$

3.
$$y'' - 6y' + 9y = x \operatorname{ch}(x)$$

4.
$$y'' - y = \cos(x)$$

5.
$$y'' + y' - y = x \sin(x)$$

6.
$$y'' + 2y' + 3y = x e^x \sin(x)$$

Exercice 15 Déterminer l'unique fonction $y: \mathbb{R} \to \mathbb{C}$ qui vérifie

$$(E) = y'' - 2(1+i)y' + 2iy = t+i,$$
 avec $y(0) = y'(0) = 0.$

Exercice 16 Déterminer l'ensemble des solutions à valeurs réelles de l'équation différentielle

$$y'' - 4y' + 13y = (12x + 8)\cos(x) + (4x + 2)\sin(x)$$