

Devoir Maison 3 Calcul algébrique, fonctions usuelles

A faire pour le jeudi 13 novembre

Problème I - Calcul algébrique

Pour tout $n \in \mathbb{N}$, $(a_k)_{k \in [0;n]} \in \mathbb{R}^{n+1}$ et $(b_k)_{k \in [0;n]} \in \mathbb{R}^{n+1}$, on pose $S_n = \sum_{k=0}^n a_k b_{n-k}$.

Partie 1 : Ce n'est pas toujours mauvais de bien connaître ses ex(emples)

- 1. Soit $a \in \mathbb{R}$. On suppose que pour tout $n \in \mathbb{N}$, $a_n = a^n$ et $b_n = 3$. Calculer alors pour tout $n \in \mathbb{N}$, S_n .
- 2. Soit $(a,b) \in \mathbb{R}^2$, $a \neq b$. On suppose que $\forall n \in \mathbb{N}$, $a_n = a^n$ et $b_n = b^n$. Calculer alors $\forall n \in \mathbb{N}$, S_n .
- 3. Soit $n \in \mathbb{N}$. On pose pour tout $k \in [0; n]$, $a_k = \binom{n}{k}$ et $b_k = 2^k$. Calculer dans ce cas S_n .
- 4. On suppose que pour tout $n \in \mathbb{N}$, $a_n = n + 1$ et $b_n = n^2$. Calculer alors pour tout $n \in \mathbb{N}$, S_n .
- 5. Soient $x \in \mathbb{R}^*$. On suppose que pour tout $n \in \mathbb{N}$, $a_n = b_n = \operatorname{ch}(nx)$.
 - (a) Soit $(n,k) \in \mathbb{N}^2$. Développer $\operatorname{ch}(kx) \operatorname{ch}((n-k)x)$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$, $S_n = \frac{(n+1)\operatorname{ch}(nx)}{2} + \frac{\operatorname{sh}((n+1)x)}{2\operatorname{sh}(x)}$.
- 6. Soit $n \in \mathbb{N}$. On pose pour tout $k \in [0; n]$, $a_k = \sum_{i=k}^n \frac{1}{i+1}$ et $b_k = 1$. Calculer dans ce cas S_n .

Partie 2 : Parfois on reste même en relation de façon récurrente

On suppose dans cette partie que pour tout $n \in \mathbb{N}$,

$$a_n = b_n = \frac{1}{n+1} \binom{2n}{n}.$$

On obtient alors l'expression suivante de S_n et on pose également T_n par, pour tout $n \in \mathbb{N}$,

$$S_n = \sum_{k=0}^n a_k a_{n-k}$$
 et $T_n = \sum_{k=0}^n k a_k a_{n-k}$.

- 7. Calculer successivement $a_0, a_1, a_2, a_3, a_4, S_0, S_1, S_2, S_3$. Quelle conjecture peut-on émettre?
- 8. Montrer que pour tout $n \in \mathbb{N}$, $(n+2) a_{n+1} = 2(2n+1) a_n$.
- 9. A l'aide d'un changement d'indice, montrer que

$$\forall n \in \mathbb{N}, \qquad T_{n+1} + S_{n+1} = a_{n+1} + \sum_{k=0}^{n} (k+2) a_{k+1} a_{n-k}.$$

- 10. En déduire que pour tout $n \in \mathbb{N}$, $T_{n+1} + S_{n+1} = a_{n+1} + 4T_n + 2S_n$.
- 11. (a) Montrer que pour tout $n \in \mathbb{N}$, $T_n = \sum_{k=0}^n (n-k) a_k a_{n-k}$.
 - (b) En déduire une expression de T_n en fonction de S_n .
- 12. Déduire des questions précédentes une relation de récurrence entre S_{n+1} , a_{n+1} et S_n pour tout $n \in \mathbb{N}$.
- 13. Démontrer que pour tout $n \in \mathbb{N}$, $S_n = a_{n+1}$.
- 14. Montrer que pour tout $n \in \mathbb{N}$, $a_n \in \mathbb{N}$.

Problème II - Fonctions usuelles

On considère les fonctions définies lorsque c'est possible par

$$f(x) = \arcsin\left(\frac{x}{2} - 1\right)$$
 et $g(x) = 2\arctan\left(\sqrt{\frac{x}{4 - x}}\right)$.

On souhaite montrer l'égalité suivante :

$$\forall x \in [0; 4[, \qquad g(x) = f(x) + \frac{\pi}{2}. \tag{\bigstar}$$

Partie 1 : Même si g a du pi en plus, il n'est pas vache

- 1. Déterminer \mathcal{D}_f le domaine de définition de f.
- 2. Préciser f(0), f(2) et $f(\sqrt{3}+2)$.
- 3. Déterminer $\mathcal{D}_{f'}$ le domaine de dérivabilité de f.
- 4. Montrer que pour tout $x \in \mathcal{D}_{f'}$,

$$f'(x) = \frac{1}{\sqrt{x(4-x)}}.$$

- 5. Déterminer I le domaine de définition de g.
- 6. Préciser g(0) et g(2).
- 7. Résoudre l'équation $g(x) = \frac{\pi}{3}$.
- 8. Déterminer I' le domaine de dérivabilité de g.
- 9. Montrer que pour tout $x \in I'$,

$$g'(x) = \frac{1}{\sqrt{x(4-x)}}.$$

10. Etablir (★).

Partie 2 : La trigo fait aussi trivialement le tri

On fixe $x \in [0; 4[$.

- 11. Soit $u \in]-\frac{\pi}{2}; \frac{\pi}{2}[.$
 - (a) Exprimer tan'(u) en fonction de tan(u).
 - (b) Exprimer tan'(u) en fonction de cos(u).
 - (c) En déduire que pour tout $t \in \mathbb{R}$, $\cos^2(\arctan(t)) = \frac{1}{1+t^2}$.
- 12. En déduire $\cos(g(x))$.
- 13. Calculer $\cos\left(f(x) + \frac{\pi}{2}\right)$.
- 14. En déduire (\bigstar) .

Partie 3 : Dire que l'on finit en beauté n'est certainement pas une hyperbole

- 15. Résoudre l'équation $ch(y) = \sqrt{2}$, d'inconnue $y \in \mathbb{R}$.
- 16. En déduire $A = \{ y \in \mathbb{R} \mid 2 \operatorname{ch}^2(y) \in [0; 4[\}.$
- 17. A l'aide de (\bigstar) , montrer que

$$\forall y \in A, \qquad 2\arctan\left(\frac{\operatorname{ch}(y)}{\sqrt{2-\operatorname{ch}^2(y)}}\right) = \arcsin\left(\operatorname{sh}^2(y)\right) + \frac{\pi}{2}.$$